mrpt.pymrpt.mrpt.maps
index
(built-in)

Bindings for mrpt::maps namespace

 
Classes
       
mrpt.pymrpt.mrpt.Stringifyable(pybind11_builtins.pybind11_object)
CMetricMap(mrpt.pymrpt.mrpt.serialization.CSerializable, mrpt.pymrpt.mrpt.system.CObservable, mrpt.pymrpt.mrpt.Stringifyable, mrpt.pymrpt.mrpt.opengl.Visualizable)
CBeaconMap
CHeightGridMap2D(CMetricMap, mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, CHeightGridMap2D_Base)
CLandmarksMap
CMultiMetricMap
COccupancyGridMap2D(CMetricMap, CLogOddsGridMap2D_signed_char_t)
COccupancyGridMap3D(CMetricMap, CLogOddsGridMap3D_signed_char_t)
COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t
CColouredOctoMap
COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t
COctoMap
CPointsMap(CMetricMap, mrpt.pymrpt.mrpt.opengl.PLY_Importer, mrpt.pymrpt.mrpt.opengl.PLY_Exporter)
CColouredPointsMap
CPointsMapXYZI
CSimplePointsMap
CWeightedPointsMap
CRandomFieldGridMap2D(CMetricMap, mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t)
CGasConcentrationGridMap2D
CHeightGridMap2D_MRF(CRandomFieldGridMap2D, CHeightGridMap2D_Base)
CWirelessPowerGridMap2D
CReflectivityGridMap2D(CMetricMap, mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, CLogOddsGridMap2D_signed_char_t)
mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t(mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable)
CMultiMetricMapPDF(mrpt.pymrpt.mrpt.serialization.CSerializable, mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, mrpt.pymrpt.mrpt.slam.PF_implementation_mrpt_maps_CRBPFParticleData_mrpt_maps_CMultiMetricMapPDF_mrpt_bayes_particle_storage_mode_POINTER_t)
mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t(pybind11_builtins.pybind11_object)
CMultiMetricMapPDF(mrpt.pymrpt.mrpt.serialization.CSerializable, mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, mrpt.pymrpt.mrpt.slam.PF_implementation_mrpt_maps_CRBPFParticleData_mrpt_maps_CMultiMetricMapPDF_mrpt_bayes_particle_storage_mode_POINTER_t)
mrpt.pymrpt.mrpt.config.CLoadableOptions(pybind11_builtins.pybind11_object)
TMapGenericParams(mrpt.pymrpt.mrpt.config.CLoadableOptions, mrpt.pymrpt.mrpt.serialization.CSerializable)
TSetOfMetricMapInitializers
mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t(pybind11_builtins.pybind11_object)
CRandomFieldGridMap3D(mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t, mrpt.pymrpt.mrpt.serialization.CSerializable)
mrpt.pymrpt.mrpt.opengl.Visualizable(pybind11_builtins.pybind11_object)
CMetricMap(mrpt.pymrpt.mrpt.serialization.CSerializable, mrpt.pymrpt.mrpt.system.CObservable, mrpt.pymrpt.mrpt.Stringifyable, mrpt.pymrpt.mrpt.opengl.Visualizable)
CBeaconMap
CHeightGridMap2D(CMetricMap, mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, CHeightGridMap2D_Base)
CLandmarksMap
CMultiMetricMap
COccupancyGridMap2D(CMetricMap, CLogOddsGridMap2D_signed_char_t)
COccupancyGridMap3D(CMetricMap, CLogOddsGridMap3D_signed_char_t)
COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t
CColouredOctoMap
COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t
COctoMap
CPointsMap(CMetricMap, mrpt.pymrpt.mrpt.opengl.PLY_Importer, mrpt.pymrpt.mrpt.opengl.PLY_Exporter)
CColouredPointsMap
CPointsMapXYZI
CSimplePointsMap
CWeightedPointsMap
CRandomFieldGridMap2D(CMetricMap, mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t)
CGasConcentrationGridMap2D
CHeightGridMap2D_MRF(CRandomFieldGridMap2D, CHeightGridMap2D_Base)
CWirelessPowerGridMap2D
CReflectivityGridMap2D(CMetricMap, mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, CLogOddsGridMap2D_signed_char_t)
mrpt.pymrpt.mrpt.poses.CPointPDF(mrpt.pymrpt.mrpt.serialization.CSerializable, mrpt.pymrpt.mrpt.math.CProbabilityDensityFunction_mrpt_poses_CPoint3D_3UL_t)
CBeacon
mrpt.pymrpt.mrpt.serialization.CSerializable(mrpt.pymrpt.mrpt.rtti.CObject)
CLandmark
CMetricMap(mrpt.pymrpt.mrpt.serialization.CSerializable, mrpt.pymrpt.mrpt.system.CObservable, mrpt.pymrpt.mrpt.Stringifyable, mrpt.pymrpt.mrpt.opengl.Visualizable)
CBeaconMap
CHeightGridMap2D(CMetricMap, mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, CHeightGridMap2D_Base)
CLandmarksMap
CMultiMetricMap
COccupancyGridMap2D(CMetricMap, CLogOddsGridMap2D_signed_char_t)
COccupancyGridMap3D(CMetricMap, CLogOddsGridMap3D_signed_char_t)
COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t
CColouredOctoMap
COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t
COctoMap
CPointsMap(CMetricMap, mrpt.pymrpt.mrpt.opengl.PLY_Importer, mrpt.pymrpt.mrpt.opengl.PLY_Exporter)
CColouredPointsMap
CPointsMapXYZI
CSimplePointsMap
CWeightedPointsMap
CRandomFieldGridMap2D(CMetricMap, mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t)
CGasConcentrationGridMap2D
CHeightGridMap2D_MRF(CRandomFieldGridMap2D, CHeightGridMap2D_Base)
CWirelessPowerGridMap2D
CReflectivityGridMap2D(CMetricMap, mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, CLogOddsGridMap2D_signed_char_t)
CMultiMetricMapPDF(mrpt.pymrpt.mrpt.serialization.CSerializable, mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, mrpt.pymrpt.mrpt.slam.PF_implementation_mrpt_maps_CRBPFParticleData_mrpt_maps_CMultiMetricMapPDF_mrpt_bayes_particle_storage_mode_POINTER_t)
CRBPFParticleData
CRandomFieldGridMap3D(mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t, mrpt.pymrpt.mrpt.serialization.CSerializable)
CSimpleMap
TMapGenericParams(mrpt.pymrpt.mrpt.config.CLoadableOptions, mrpt.pymrpt.mrpt.serialization.CSerializable)
mrpt.pymrpt.mrpt.slam.PF_implementation_mrpt_maps_CRBPFParticleData_mrpt_maps_CMultiMetricMapPDF_mrpt_bayes_particle_storage_mode_POINTER_t(pybind11_builtins.pybind11_object)
CMultiMetricMapPDF(mrpt.pymrpt.mrpt.serialization.CSerializable, mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, mrpt.pymrpt.mrpt.slam.PF_implementation_mrpt_maps_CRBPFParticleData_mrpt_maps_CMultiMetricMapPDF_mrpt_bayes_particle_storage_mode_POINTER_t)
mrpt.pymrpt.mrpt.system.CObservable(pybind11_builtins.pybind11_object)
CMetricMap(mrpt.pymrpt.mrpt.serialization.CSerializable, mrpt.pymrpt.mrpt.system.CObservable, mrpt.pymrpt.mrpt.Stringifyable, mrpt.pymrpt.mrpt.opengl.Visualizable)
CBeaconMap
CHeightGridMap2D(CMetricMap, mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, CHeightGridMap2D_Base)
CLandmarksMap
CMultiMetricMap
COccupancyGridMap2D(CMetricMap, CLogOddsGridMap2D_signed_char_t)
COccupancyGridMap3D(CMetricMap, CLogOddsGridMap3D_signed_char_t)
COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t
CColouredOctoMap
COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t
COctoMap
CPointsMap(CMetricMap, mrpt.pymrpt.mrpt.opengl.PLY_Importer, mrpt.pymrpt.mrpt.opengl.PLY_Exporter)
CColouredPointsMap
CPointsMapXYZI
CSimplePointsMap
CWeightedPointsMap
CRandomFieldGridMap2D(CMetricMap, mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t)
CGasConcentrationGridMap2D
CHeightGridMap2D_MRF(CRandomFieldGridMap2D, CHeightGridMap2D_Base)
CWirelessPowerGridMap2D
CReflectivityGridMap2D(CMetricMap, mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, CLogOddsGridMap2D_signed_char_t)
mrpt.pymrpt.mrpt.system.mrptEvent(pybind11_builtins.pybind11_object)
mrptEventMetricMapClear
mrptEventMetricMapInsert
pybind11_builtins.pybind11_object(builtins.object)
CHeightGridMap2D_Base
CLogOddsGridMap2D_signed_char_t
CLogOddsGridMap3D_signed_char_t
CLogOddsGridMapLUT_signed_char_t
CPointCloudFilterBase
CPointCloudFilterByDistance
OccGridCellTraits
THeightGridmapCell
TMatchingExtraResults
TMatchingParams
TMatchingRatioParams
TRandomFieldCell
TRandomFieldVoxel

 
class CBeacon(mrpt.pymrpt.mrpt.poses.CPointPDF)
    The class for storing individual "beacon landmarks" under a variety of 3D
position PDF distributions.
 This class is used for storage within the class CBeaconMap.
 The class implements the same methods than the interface "CPointPDF", and
invoking them actually becomes
  a mapping into the methods of the current PDF representation of the
beacon, selectable by means of "m_typePDF"
 
 
CBeaconMap, CPointPDFSOG
 
 
Method resolution order:
CBeacon
mrpt.pymrpt.mrpt.poses.CPointPDF
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.math.CProbabilityDensityFunction_mrpt_poses_CPoint3D_3UL_t
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CBeacon) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CBeacon::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CBeacon) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CBeacon, arg0: mrpt.pymrpt.mrpt.maps.CBeacon) -> None
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CBeacon, arg0: mrpt.pymrpt.mrpt.maps.CBeacon) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CBeacon, : mrpt.pymrpt.mrpt.maps.CBeacon) -> mrpt.pymrpt.mrpt.maps.CBeacon
 
C++: mrpt::maps::CBeacon::operator=(const class mrpt::maps::CBeacon &) --> class mrpt::maps::CBeacon &
bayesianFusion(...)
bayesianFusion(*args, **kwargs)
Overloaded function.
 
1. bayesianFusion(self: mrpt.pymrpt.mrpt.maps.CBeacon, p1: mrpt.pymrpt.mrpt.poses.CPointPDF, p2: mrpt.pymrpt.mrpt.poses.CPointPDF) -> None
 
2. bayesianFusion(self: mrpt.pymrpt.mrpt.maps.CBeacon, p1: mrpt.pymrpt.mrpt.poses.CPointPDF, p2: mrpt.pymrpt.mrpt.poses.CPointPDF, minMahalanobisDistToDrop: float) -> None
 
Bayesian fusion of two point distributions (product of two
 distributions->new distribution), then save the result in this object
 (WARNING: See implementing classes to see classes that can and cannot be
 mixtured!)
 
 
 The first distribution to fuse
 
 
 The second distribution to fuse
 
 
 If set to different of 0, the result of
 very separate Gaussian modes (that will result in negligible components)
 in SOGs will be dropped to reduce the number of modes in the output.
 
C++: mrpt::maps::CBeacon::bayesianFusion(const class mrpt::poses::CPointPDF &, const class mrpt::poses::CPointPDF &, const double) --> void
changeCoordinatesReference(...)
changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CBeacon, newReferenceBase: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
this = p (+) this. This can be used to convert a PDF from local
 coordinates to global, providing the point (newReferenceBase) from which
   "to project" the current pdf. Result PDF substituted the currently
 stored one in the object.
 
C++: mrpt::maps::CBeacon::changeCoordinatesReference(const class mrpt::poses::CPose3D &) --> void
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CBeacon) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CBeacon::clone() const --> class mrpt::rtti::CObject *
copyFrom(...)
copyFrom(self: mrpt.pymrpt.mrpt.maps.CBeacon, o: mrpt.pymrpt.mrpt.poses.CPointPDF) -> None
 
Copy operator, translating if necesary (for example, between particles
 and gaussian representations) 
 
C++: mrpt::maps::CBeacon::copyFrom(const class mrpt::poses::CPointPDF &) --> void
drawSingleSample(...)
drawSingleSample(self: mrpt.pymrpt.mrpt.maps.CBeacon, outSample: mrpt.pymrpt.mrpt.poses.CPoint3D) -> None
 
Draw a sample from the pdf. 
 
C++: mrpt::maps::CBeacon::drawSingleSample(class mrpt::poses::CPoint3D &) const --> void
generateObservationModelDistribution(...)
generateObservationModelDistribution(*args, **kwargs)
Overloaded function.
 
1. generateObservationModelDistribution(self: mrpt.pymrpt.mrpt.maps.CBeacon, sensedRange: float, outPDF: mrpt.pymrpt.mrpt.poses.CPointPDFSOG, myBeaconMap: mrpt::maps::CBeaconMap, sensorPntOnRobot: mrpt.pymrpt.mrpt.poses.CPoint3D) -> None
 
2. generateObservationModelDistribution(self: mrpt.pymrpt.mrpt.maps.CBeacon, sensedRange: float, outPDF: mrpt.pymrpt.mrpt.poses.CPointPDFSOG, myBeaconMap: mrpt::maps::CBeaconMap, sensorPntOnRobot: mrpt.pymrpt.mrpt.poses.CPoint3D, centerPoint: mrpt.pymrpt.mrpt.poses.CPoint3D) -> None
 
3. generateObservationModelDistribution(self: mrpt.pymrpt.mrpt.maps.CBeacon, sensedRange: float, outPDF: mrpt.pymrpt.mrpt.poses.CPointPDFSOG, myBeaconMap: mrpt::maps::CBeaconMap, sensorPntOnRobot: mrpt.pymrpt.mrpt.poses.CPoint3D, centerPoint: mrpt.pymrpt.mrpt.poses.CPoint3D, maxDistanceFromCenter: float) -> None
 
Compute the observation model p(z_t|x_t) for a given observation (range
 value), and return it as an approximate SOG.
  Note that if the beacon is a SOG itself, the number of gaussian modes
 will be square.
  As a speed-up, if a "center point"+"maxDistanceFromCenter" is supplied
 (maxDistanceFromCenter!=0), those modes farther than this sphere will be
 discarded.
  Parameters such as the stdSigma of the sensor are gathered from
 "myBeaconMap"
  The result is one "ring" for each Gaussian mode that represent the
 beacon position in this object.
  The position of the sensor on the robot is used to shift the resulting
 densities such as they represent the position of the robot, not the
 sensor.
  
 
 CBeaconMap::insertionOptions, generateRingSOG
 
C++: mrpt::maps::CBeacon::generateObservationModelDistribution(float, class mrpt::poses::CPointPDFSOG &, const class mrpt::maps::CBeaconMap *, const class mrpt::poses::CPoint3D &, const class mrpt::poses::CPoint3D &, float) const --> void
getAsMatlabDrawCommands(...)
getAsMatlabDrawCommands(self: mrpt.pymrpt.mrpt.maps.CBeacon, out_Str: List[str]) -> None
 
Gets a set of MATLAB commands which draw the current state of the
 beacon: 
 
C++: mrpt::maps::CBeacon::getAsMatlabDrawCommands(class std::vector<std::string > &) const --> void
getCovarianceAndMean(...)
getCovarianceAndMean(self: mrpt.pymrpt.mrpt.maps.CBeacon) -> Tuple[mrpt.pymrpt.mrpt.math.CMatrixFixed_double_3UL_3UL_t, mrpt.pymrpt.mrpt.poses.CPoint3D]
 
C++: mrpt::maps::CBeacon::getCovarianceAndMean() const --> class std::tuple<class mrpt::math::CMatrixFixed<double, 3, 3>, class mrpt::poses::CPoint3D>
getMean(...)
getMean(self: mrpt.pymrpt.mrpt.maps.CBeacon, mean_point: mrpt.pymrpt.mrpt.poses.CPoint3D) -> None
 
C++: mrpt::maps::CBeacon::getMean(class mrpt::poses::CPoint3D &) const --> void
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.CBeacon, o: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
Saves a 3D representation of the beacon into a given OpenGL scene  
 
C++: mrpt::maps::CBeacon::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
saveToTextFile(...)
saveToTextFile(self: mrpt.pymrpt.mrpt.maps.CBeacon, file: str) -> bool
 
Save PDF's particles to a text file. See derived classes for more
 information about the format of generated files 
 
C++: mrpt::maps::CBeacon::saveToTextFile(const std::string &) const --> bool

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CBeacon::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CBeacon::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &
generateRingSOG(...) from builtins.PyCapsule
generateRingSOG(*args, **kwargs)
Overloaded function.
 
1. generateRingSOG(sensedRange: float, outPDF: mrpt.pymrpt.mrpt.poses.CPointPDFSOG, myBeaconMap: mrpt::maps::CBeaconMap, sensorPnt: mrpt.pymrpt.mrpt.poses.CPoint3D) -> None
 
2. generateRingSOG(sensedRange: float, outPDF: mrpt.pymrpt.mrpt.poses.CPointPDFSOG, myBeaconMap: mrpt::maps::CBeaconMap, sensorPnt: mrpt.pymrpt.mrpt.poses.CPoint3D, covarianceCompositionToAdd: mrpt.pymrpt.mrpt.math.CMatrixFixed_double_3UL_3UL_t) -> None
 
3. generateRingSOG(sensedRange: float, outPDF: mrpt.pymrpt.mrpt.poses.CPointPDFSOG, myBeaconMap: mrpt::maps::CBeaconMap, sensorPnt: mrpt.pymrpt.mrpt.poses.CPoint3D, covarianceCompositionToAdd: mrpt.pymrpt.mrpt.math.CMatrixFixed_double_3UL_3UL_t, clearPreviousContentsOutPDF: bool) -> None
 
4. generateRingSOG(sensedRange: float, outPDF: mrpt.pymrpt.mrpt.poses.CPointPDFSOG, myBeaconMap: mrpt::maps::CBeaconMap, sensorPnt: mrpt.pymrpt.mrpt.poses.CPoint3D, covarianceCompositionToAdd: mrpt.pymrpt.mrpt.math.CMatrixFixed_double_3UL_3UL_t, clearPreviousContentsOutPDF: bool, centerPoint: mrpt.pymrpt.mrpt.poses.CPoint3D) -> None
 
5. generateRingSOG(sensedRange: float, outPDF: mrpt.pymrpt.mrpt.poses.CPointPDFSOG, myBeaconMap: mrpt::maps::CBeaconMap, sensorPnt: mrpt.pymrpt.mrpt.poses.CPoint3D, covarianceCompositionToAdd: mrpt.pymrpt.mrpt.math.CMatrixFixed_double_3UL_3UL_t, clearPreviousContentsOutPDF: bool, centerPoint: mrpt.pymrpt.mrpt.poses.CPoint3D, maxDistanceFromCenter: float) -> None
 
This static method returns a SOG with ring-shape (or as a 3D sphere)
 that can be used to initialize a beacon if observed the first time.
  sensorPnt is the center of the ring/sphere, i.e. the absolute position
 of the range sensor.
  If clearPreviousContentsOutPDF=false, the SOG modes will be added to
 the current contents of outPDF
  If the 3x3 matrix covarianceCompositionToAdd is provided, it will be
 add to every Gaussian (to model the composition of uncertainty).
 
 
 generateObservationModelDistribution
 
C++: mrpt::maps::CBeacon::generateRingSOG(float, class mrpt::poses::CPointPDFSOG &, const class mrpt::maps::CBeaconMap *, const class mrpt::poses::CPoint3D &, const class mrpt::math::CMatrixFixed<double, 3, 3> *, bool, const class mrpt::poses::CPoint3D &, float) --> void

Data descriptors defined here:
m_ID
m_locationGauss
m_locationMC
m_locationSOG
m_typePDF

Data and other attributes defined here:
TTypePDF = <class 'mrpt.pymrpt.mrpt.maps.CBeacon.TTypePDF'>
pdfGauss = <TTypePDF.pdfGauss: 1>
pdfMonteCarlo = <TTypePDF.pdfMonteCarlo: 0>
pdfSOG = <TTypePDF.pdfSOG: 2>

Static methods inherited from mrpt.pymrpt.mrpt.poses.CPointPDF:
is_3D(...) from builtins.PyCapsule
is_3D() -> bool
 
C++: mrpt::poses::CPointPDF::is_3D() --> bool
is_PDF(...) from builtins.PyCapsule
is_PDF() -> bool
 
C++: mrpt::poses::CPointPDF::is_PDF() --> bool

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.math.CProbabilityDensityFunction_mrpt_poses_CPoint3D_3UL_t:
getCovariance(...)
getCovariance(*args, **kwargs)
Overloaded function.
 
1. getCovariance(self: mrpt.pymrpt.mrpt.math.CProbabilityDensityFunction_mrpt_poses_CPoint3D_3UL_t, cov: mrpt::math::CMatrixDynamic<double>) -> None
 
C++: mrpt::math::CProbabilityDensityFunction<mrpt::poses::CPoint3D, 3>::getCovariance(class mrpt::math::CMatrixDynamic<double> &) const --> void
 
2. getCovariance(self: mrpt.pymrpt.mrpt.math.CProbabilityDensityFunction_mrpt_poses_CPoint3D_3UL_t, cov: mrpt::math::CMatrixFixed<double, 3ul, 3ul>) -> None
 
C++: mrpt::math::CProbabilityDensityFunction<mrpt::poses::CPoint3D, 3>::getCovariance(class mrpt::math::CMatrixFixed<double, 3, 3> &) const --> void
 
3. getCovariance(self: mrpt.pymrpt.mrpt.math.CProbabilityDensityFunction_mrpt_poses_CPoint3D_3UL_t) -> mrpt::math::CMatrixFixed<double, 3ul, 3ul>
 
C++: mrpt::math::CProbabilityDensityFunction<mrpt::poses::CPoint3D, 3>::getCovariance() const --> class mrpt::math::CMatrixFixed<double, 3, 3>
getCovarianceDynAndMean(...)
getCovarianceDynAndMean(self: mrpt.pymrpt.mrpt.math.CProbabilityDensityFunction_mrpt_poses_CPoint3D_3UL_t, cov: mrpt::math::CMatrixDynamic<double>, mean_point: mrpt::poses::CPoint3D) -> None
 
C++: mrpt::math::CProbabilityDensityFunction<mrpt::poses::CPoint3D, 3>::getCovarianceDynAndMean(class mrpt::math::CMatrixDynamic<double> &, class mrpt::poses::CPoint3D &) const --> void
getCovarianceEntropy(...)
getCovarianceEntropy(self: mrpt.pymrpt.mrpt.math.CProbabilityDensityFunction_mrpt_poses_CPoint3D_3UL_t) -> float
 
C++: mrpt::math::CProbabilityDensityFunction<mrpt::poses::CPoint3D, 3>::getCovarianceEntropy() const --> double
getInformationMatrix(...)
getInformationMatrix(self: mrpt.pymrpt.mrpt.math.CProbabilityDensityFunction_mrpt_poses_CPoint3D_3UL_t, inf: mrpt::math::CMatrixFixed<double, 3ul, 3ul>) -> None
 
C++: mrpt::math::CProbabilityDensityFunction<mrpt::poses::CPoint3D, 3>::getInformationMatrix(class mrpt::math::CMatrixFixed<double, 3, 3> &) const --> void
getMeanVal(...)
getMeanVal(self: mrpt.pymrpt.mrpt.math.CProbabilityDensityFunction_mrpt_poses_CPoint3D_3UL_t) -> mrpt::poses::CPoint3D
 
C++: mrpt::math::CProbabilityDensityFunction<mrpt::poses::CPoint3D, 3>::getMeanVal() const --> class mrpt::poses::CPoint3D
isInfType(...)
isInfType(self: mrpt.pymrpt.mrpt.math.CProbabilityDensityFunction_mrpt_poses_CPoint3D_3UL_t) -> bool
 
C++: mrpt::math::CProbabilityDensityFunction<mrpt::poses::CPoint3D, 3>::isInfType() const --> bool

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CBeaconMap(CMetricMap)
    A class for storing a map of 3D probabilistic beacons, using a Montecarlo,
Gaussian, or Sum of Gaussians (SOG) representation (for range-only SLAM).
 
  The individual beacons are defined as mrpt::maps::CBeacon objects.
 
  When invoking CBeaconMap::insertObservation(), landmarks will be extracted
and fused into the map.
   The only currently supported observation type is
mrpt::obs::CObservationBeaconRanges.
   See insertionOptions and likelihoodOptions for parameters used when
creating and fusing beacon landmarks.
 
   Use "TInsertionOptions::insertAsMonteCarlo" to select between 2 different
behaviors:
                - Initial PDF of beacons: MonteCarlo, after convergence, pass to
Gaussians; or
                - Initial PDF of beacons: SOG, after convergence, a single Gaussian.
 
   Refer to the papers: []
 
 
 
 
 CMetricMap
 
 
Method resolution order:
CBeaconMap
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CBeaconMap) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CBeaconMap::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__getitem__(...)
__getitem__(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, i: int) -> mrpt.pymrpt.mrpt.maps.CBeacon
 
Access to individual beacons 
 
C++: mrpt::maps::CBeaconMap::operator[](size_t) --> class mrpt::maps::CBeacon &
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CBeaconMap) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, arg0: mrpt.pymrpt.mrpt.maps.CBeaconMap) -> None
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, arg0: mrpt.pymrpt.mrpt.maps.CBeaconMap) -> None
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.CBeaconMap) -> str
 
Returns a short description of the map. 
 
C++: mrpt::maps::CBeaconMap::asString() const --> std::string
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, : mrpt.pymrpt.mrpt.maps.CBeaconMap) -> mrpt.pymrpt.mrpt.maps.CBeaconMap
 
C++: mrpt::maps::CBeaconMap::operator=(const class mrpt::maps::CBeaconMap &) --> class mrpt::maps::CBeaconMap &
changeCoordinatesReference(...)
changeCoordinatesReference(*args, **kwargs)
Overloaded function.
 
1. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, newOrg: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
Changes the reference system of the map to a given 3D pose.
 
C++: mrpt::maps::CBeaconMap::changeCoordinatesReference(const class mrpt::poses::CPose3D &) --> void
 
2. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, newOrg: mrpt.pymrpt.mrpt.poses.CPose3D, otherMap: mrpt.pymrpt.mrpt.maps.CBeaconMap) -> None
 
Changes the reference system of the map "otherMap" and save the result
 in "this" map.
 
C++: mrpt::maps::CBeaconMap::changeCoordinatesReference(const class mrpt::poses::CPose3D &, const class mrpt::maps::CBeaconMap *) --> void
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CBeaconMap) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CBeaconMap::clone() const --> class mrpt::rtti::CObject *
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
C++: mrpt::maps::CBeaconMap::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
C++: mrpt::maps::CBeaconMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
get(...)
get(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, i: int) -> mrpt.pymrpt.mrpt.maps.CBeacon
 
Access to individual beacons 
 
C++: mrpt::maps::CBeaconMap::get(size_t) --> class mrpt::maps::CBeacon &
getBeaconByID(...)
getBeaconByID(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, id: int) -> mrpt.pymrpt.mrpt.maps.CBeacon
 
Returns a pointer to the beacon with the given ID, or nullptr if it does
 not exist. 
 
C++: mrpt::maps::CBeaconMap::getBeaconByID(int64_t) --> class mrpt::maps::CBeacon *
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, outObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
Returns a 3D object representing the map. 
 
C++: mrpt::maps::CBeaconMap::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.CBeaconMap) -> bool
 
Returns true if the map is empty/no observation has been inserted.
 
C++: mrpt::maps::CBeaconMap::isEmpty() const --> bool
push_back(...)
push_back(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, m: mrpt.pymrpt.mrpt.maps.CBeacon) -> None
 
Inserts a copy of the given mode into the SOG 
 
C++: mrpt::maps::CBeaconMap::push_back(const class mrpt::maps::CBeacon &) --> void
resize(...)
resize(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, N: int) -> None
 
Resize the number of SOG modes 
 
C++: mrpt::maps::CBeaconMap::resize(size_t) --> void
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, filNamePrefix: str) -> None
 
This virtual method saves the map to a file "filNamePrefix"+<
some_file_extension >, as an image or in any other applicable way (Notice
that other methods to save the map may be implemented in classes
implementing this virtual interface).
  In the case of this class, these files are generated:
                - "filNamePrefix"+"_3D.m": A script for MATLAB for drawing landmarks
as
3D ellipses.
                - "filNamePrefix"+"_3D.3DScene": A 3D scene with a "ground plane
grid"
and the set of ellipsoids in 3D.
                - "filNamePrefix"+"_covs.m": A textual representation (see
saveToTextFile)
 
C++: mrpt::maps::CBeaconMap::saveMetricMapRepresentationToFile(const std::string &) const --> void
saveToMATLABScript3D(...)
saveToMATLABScript3D(*args, **kwargs)
Overloaded function.
 
1. saveToMATLABScript3D(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, file: str) -> bool
 
2. saveToMATLABScript3D(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, file: str, style: str) -> bool
 
3. saveToMATLABScript3D(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, file: str, style: str, confInterval: float) -> bool
 
Save to a MATLAB script which displays 3D error ellipses for the map.
        
 
                The name of the file to save the script to.
  
 
        The MATLAB-like string for the style of the lines (see
'help plot' in MATLAB for possibilities)
  
 
 The ellipsoids will be drawn from the center to a given
confidence interval in [0,1], e.g. 2 sigmas=0.95 (default is 2std = 0.95
confidence intervals)
 
  
 Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CBeaconMap::saveToMATLABScript3D(const std::string &, const char *, float) const --> bool
saveToTextFile(...)
saveToTextFile(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, fil: str) -> None
 
Save a text file with a row per beacon, containing this 11 elements:
  - X Y Z: Mean values
  - VX VY VZ: Variances of each dimension (C11, C22, C33)
  - DET2D DET3D: Determinant of the 2D and 3D covariance matrixes.
  - C12, C13, C23: Cross covariances
 
C++: mrpt::maps::CBeaconMap::saveToTextFile(const std::string &) const --> void
simulateBeaconReadings(...)
simulateBeaconReadings(self: mrpt.pymrpt.mrpt.maps.CBeaconMap, in_robotPose: mrpt.pymrpt.mrpt.poses.CPose3D, in_sensorLocationOnRobot: mrpt.pymrpt.mrpt.poses.CPoint3D, out_Observations: mrpt::obs::CObservationBeaconRanges) -> None
 
Simulates a reading toward each of the beacons in the landmarks map, if
 any.
 
 
 This robot pose is used to simulate the ranges to
 each beacon.
 
 
 The 3D position of the sensor on the
 robot
 
 
 The results will be stored here. NOTICE that the
 fields
 "CObservationBeaconRanges::minSensorDistance","CObservationBeaconRanges::maxSensorDistance"
 and "CObservationBeaconRanges::stdError" MUST BE FILLED OUT before
 calling this function.
 An observation will be generated for each beacon in the map, but notice
 that some of them may be missed if out of the sensor maximum range.
 
C++: mrpt::maps::CBeaconMap::simulateBeaconReadings(const class mrpt::poses::CPose3D &, const class mrpt::poses::CPoint3D &, class mrpt::obs::CObservationBeaconRanges &) const --> void
size(...)
size(self: mrpt.pymrpt.mrpt.maps.CBeaconMap) -> int
 
Returns the stored landmarks count.
 
C++: mrpt::maps::CBeaconMap::size() const --> size_t

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CBeaconMap::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CBeaconMap::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
insertionOptions
likelihoodOptions

Data and other attributes defined here:
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.CBeaconMap.TInsertionOptions'>
This struct contains data for choosing the method by which new beacons
are inserted in the map.
TLikelihoodOptions = <class 'mrpt.pymrpt.mrpt.maps.CBeaconMap.TLikelihoodOptions'>
With this struct options are provided to the likelihood computations
TMapDefinition = <class 'mrpt.pymrpt.mrpt.maps.CBeaconMap.TMapDefinition'>
TMapDefinitionBase = <class 'mrpt.pymrpt.mrpt.maps.CBeaconMap.TMapDefinitionBase'>

Methods inherited from CMetricMap:
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
Erase all the contents of the map 
 
C++: mrpt::maps::CMetricMap::clear() --> void
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matchings between this and another 3D points map - method
used in 3D-ICP.
  This method finds the set of point pairs in each map.
 
  The method is the most time critical one into ICP-like algorithms.
 
  The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.CMetricMap, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map. 
 
C++: mrpt::maps::CMetricMap::squareDistanceToClosestCorrespondence(float, float) const --> float

Data descriptors inherited from CMetricMap:
genericMapParams

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CColouredOctoMap(COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t)
    A three-dimensional probabilistic occupancy grid, implemented as an
octo-tree with the "octomap" C++ library.
 This version stores both, occupancy information and RGB colour data at
each octree node. See the base class mrpt::maps::COctoMapBase.
 
 
CMetricMap, the example in "MRPT/samples/octomap_simple"
 
 
Method resolution order:
CColouredOctoMap
COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CColouredOctoMap::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> None
 
doc
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, resolution: float) -> None
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, arg0: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> None
 
4. __init__(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, arg0: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, : mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> mrpt.pymrpt.mrpt.maps.CColouredOctoMap
 
C++: mrpt::maps::CColouredOctoMap::operator=(const class mrpt::maps::CColouredOctoMap &) --> class mrpt::maps::CColouredOctoMap &
calcNumNodes(...)
calcNumNodes(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> int
 
Traverses the tree to calculate the total number of nodes
 
C++: mrpt::maps::CColouredOctoMap::calcNumNodes() const --> size_t
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CColouredOctoMap::clone() const --> class mrpt::rtti::CObject *
getAsOctoMapVoxels(...)
getAsOctoMapVoxels(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, gl_obj: mrpt.pymrpt.mrpt.opengl.COctoMapVoxels) -> None
 
C++: mrpt::maps::CColouredOctoMap::getAsOctoMapVoxels(class mrpt::opengl::COctoMapVoxels &) const --> void
getClampingThresMax(...)
getClampingThresMax(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> float
 
C++: mrpt::maps::CColouredOctoMap::getClampingThresMax() const --> double
getClampingThresMaxLog(...)
getClampingThresMaxLog(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> float
 
C++: mrpt::maps::CColouredOctoMap::getClampingThresMaxLog() const --> float
getClampingThresMin(...)
getClampingThresMin(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> float
 
C++: mrpt::maps::CColouredOctoMap::getClampingThresMin() const --> double
getClampingThresMinLog(...)
getClampingThresMinLog(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> float
 
C++: mrpt::maps::CColouredOctoMap::getClampingThresMinLog() const --> float
getMetricMax(...)
getMetricMax(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, x: float, y: float, z: float) -> None
 
maximum value of the bounding box of all known space in x, y, z
 
C++: mrpt::maps::CColouredOctoMap::getMetricMax(double &, double &, double &) --> void
getMetricMin(...)
getMetricMin(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, x: float, y: float, z: float) -> None
 
minimum value of the bounding box of all known space in x, y, z
 
C++: mrpt::maps::CColouredOctoMap::getMetricMin(double &, double &, double &) --> void
getMetricSize(...)
getMetricSize(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, x: float, y: float, z: float) -> None
 
Size of OcTree (all known space) in meters for x, y and z dimension
 
C++: mrpt::maps::CColouredOctoMap::getMetricSize(double &, double &, double &) --> void
getNumLeafNodes(...)
getNumLeafNodes(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> int
 
Traverses the tree to calculate the total number of leaf nodes
 
C++: mrpt::maps::CColouredOctoMap::getNumLeafNodes() const --> size_t
getOccupancyThres(...)
getOccupancyThres(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> float
 
C++: mrpt::maps::CColouredOctoMap::getOccupancyThres() const --> double
getOccupancyThresLog(...)
getOccupancyThresLog(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> float
 
C++: mrpt::maps::CColouredOctoMap::getOccupancyThresLog() const --> float
getPointColour(...)
getPointColour(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, x: float, y: float, z: float, r: int, g: int, b: int) -> bool
 
Get the RGB colour of a point
 
 
 false if the point is not mapped, in which case the
 returned colour is undefined. 
 
C++: mrpt::maps::CColouredOctoMap::getPointColour(const float, const float, const float, unsigned char &, unsigned char &, unsigned char &) const --> bool
getProbHit(...)
getProbHit(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> float
 
C++: mrpt::maps::CColouredOctoMap::getProbHit() const --> double
getProbHitLog(...)
getProbHitLog(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> float
 
C++: mrpt::maps::CColouredOctoMap::getProbHitLog() const --> float
getProbMiss(...)
getProbMiss(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> float
 
C++: mrpt::maps::CColouredOctoMap::getProbMiss() const --> double
getProbMissLog(...)
getProbMissLog(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> float
 
C++: mrpt::maps::CColouredOctoMap::getProbMissLog() const --> float
getResolution(...)
getResolution(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> float
 
C++: mrpt::maps::CColouredOctoMap::getResolution() const --> double
getTreeDepth(...)
getTreeDepth(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> int
 
C++: mrpt::maps::CColouredOctoMap::getTreeDepth() const --> unsigned int
getVoxelColourMethod(...)
getVoxelColourMethod(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> mrpt.pymrpt.mrpt.maps.CColouredOctoMap.TColourUpdate
 
Get the method used to update voxels colour
 
C++: mrpt::maps::CColouredOctoMap::getVoxelColourMethod() --> enum mrpt::maps::CColouredOctoMap::TColourUpdate
insertRay(...)
insertRay(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, end_x: float, end_y: float, end_z: float, sensor_x: float, sensor_y: float, sensor_z: float) -> None
 
Just like insertPointCloud but with a single ray. 
 
C++: mrpt::maps::CColouredOctoMap::insertRay(const float, const float, const float, const float, const float, const float) --> void
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> bool
 
Returns true if the map is empty/no observation has been inserted 
 
C++: mrpt::maps::CColouredOctoMap::isEmpty() const --> bool
isPointWithinOctoMap(...)
isPointWithinOctoMap(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, x: float, y: float, z: float) -> bool
 
Check whether the given point lies within the volume covered by the
 octomap (that is, whether it is "mapped") 
 
C++: mrpt::maps::CColouredOctoMap::isPointWithinOctoMap(const float, const float, const float) const --> bool
memoryFullGrid(...)
memoryFullGrid(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> int
 
Memory usage of a full grid of the same size as the OcTree in
 bytes (for comparison)
 
C++: mrpt::maps::CColouredOctoMap::memoryFullGrid() const --> size_t
memoryUsage(...)
memoryUsage(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> int
 
Memory usage of the complete octree in bytes (may vary between
 architectures)
 
C++: mrpt::maps::CColouredOctoMap::memoryUsage() const --> size_t
memoryUsageNode(...)
memoryUsageNode(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> int
 
Memory usage of the a single octree node
 
C++: mrpt::maps::CColouredOctoMap::memoryUsageNode() const --> size_t
setClampingThresMax(...)
setClampingThresMax(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, thresProb: float) -> None
 
C++: mrpt::maps::CColouredOctoMap::setClampingThresMax(double) --> void
setClampingThresMin(...)
setClampingThresMin(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, thresProb: float) -> None
 
C++: mrpt::maps::CColouredOctoMap::setClampingThresMin(double) --> void
setOccupancyThres(...)
setOccupancyThres(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, prob: float) -> None
 
C++: mrpt::maps::CColouredOctoMap::setOccupancyThres(double) --> void
setProbHit(...)
setProbHit(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, prob: float) -> None
 
C++: mrpt::maps::CColouredOctoMap::setProbHit(double) --> void
setProbMiss(...)
setProbMiss(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, prob: float) -> None
 
C++: mrpt::maps::CColouredOctoMap::setProbMiss(double) --> void
setVoxelColourMethod(...)
setVoxelColourMethod(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, new_method: mrpt.pymrpt.mrpt.maps.CColouredOctoMap.TColourUpdate) -> None
 
Set the method used to update voxels colour
 
C++: mrpt::maps::CColouredOctoMap::setVoxelColourMethod(enum mrpt::maps::CColouredOctoMap::TColourUpdate) --> void
size(...)
size(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> int
 
The number of nodes in the tree
 
C++: mrpt::maps::CColouredOctoMap::size() const --> size_t
updateVoxel(...)
updateVoxel(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, x: float, y: float, z: float, occupied: bool) -> None
 
Manually updates the occupancy of the voxel at (x,y,z) as being occupied
 (true) or free (false), using the log-odds parameters in 
 
 
C++: mrpt::maps::CColouredOctoMap::updateVoxel(const double, const double, const double, bool) --> void
updateVoxelColour(...)
updateVoxelColour(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap, x: float, y: float, z: float, r: int, g: int, b: int) -> None
 
Manually update the colour of the voxel at (x,y,z) 
 
C++: mrpt::maps::CColouredOctoMap::updateVoxelColour(const double, const double, const double, const unsigned char, const unsigned char, const unsigned char) --> void
volume(...)
volume(self: mrpt.pymrpt.mrpt.maps.CColouredOctoMap) -> float
 
C++: mrpt::maps::CColouredOctoMap::volume() --> double

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CColouredOctoMap::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CColouredOctoMap::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data and other attributes defined here:
AVERAGE = <TColourUpdate.AVERAGE: 2>
INTEGRATE = <TColourUpdate.INTEGRATE: 0>
SET = <TColourUpdate.SET: 1>
TColourUpdate = <class 'mrpt.pymrpt.mrpt.maps.CColouredOctoMap.TColourUpdate'>
TMapDefinition = <class 'mrpt.pymrpt.mrpt.maps.CColouredOctoMap.TMapDefinition'>
TMapDefinitionBase = <class 'mrpt.pymrpt.mrpt.maps.CColouredOctoMap.TMapDefinitionBase'>

Methods inherited from COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t:
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> str
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::asString() const --> std::string
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
castRay(...)
castRay(*args, **kwargs)
Overloaded function.
 
1. castRay(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, origin: mrpt::math::TPoint3D_<double>, direction: mrpt::math::TPoint3D_<double>, end: mrpt::math::TPoint3D_<double>) -> bool
 
2. castRay(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, origin: mrpt::math::TPoint3D_<double>, direction: mrpt::math::TPoint3D_<double>, end: mrpt::math::TPoint3D_<double>, ignoreUnknownCells: bool) -> bool
 
3. castRay(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, origin: mrpt::math::TPoint3D_<double>, direction: mrpt::math::TPoint3D_<double>, end: mrpt::math::TPoint3D_<double>, ignoreUnknownCells: bool, maxRange: float) -> bool
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::castRay(const struct mrpt::math::TPoint3D_<double> &, const struct mrpt::math::TPoint3D_<double> &, struct mrpt::math::TPoint3D_<double> &, bool, double) const --> bool
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> None
 
Erase all the contents of the map 
 
C++: mrpt::maps::CMetricMap::clear() --> void
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
Computes the ratio in [0,1] of correspondences between "this" and the
 "otherMap" map, whose 6D pose relative to "this" is "otherMapPose"
   In the case of a multi-metric map, this returns the average between the
 maps. This method always return 0 for grid maps.
 
 
      [IN] The other map to compute the matching with.
 
 
  [IN] The 6D pose of the other map as seen from
 "this".
 
 
        [IN] Matching parameters
 
 
 The matching ratio [0,1]
 
 
 determineMatching2D
 
C++: mrpt::maps::CMetricMap::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matching between this and another 2D point map, which
includes finding:
   - The set of points pairs in each map
   - The mean squared distance between corresponding pairs.
 
   The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
   This method is the most time critical one into ICP-like algorithms.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matchings between this and another 3D points map - method
used in 3D-ICP.
  This method finds the set of point pairs in each map.
 
  The method is the most time critical one into ICP-like algorithms.
 
  The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
getPointOccupancy(...)
getPointOccupancy(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, x: float, y: float, z: float, prob_occupancy: float) -> bool
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::getPointOccupancy(const float, const float, const float, double &) const --> bool
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, o: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
insertPointCloud(...)
insertPointCloud(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, ptMap: mrpt.pymrpt.mrpt.maps.CPointsMap, sensor_x: float, sensor_y: float, sensor_z: float) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::insertPointCloud(const class mrpt::maps::CPointsMap &, const float, const float, const float) --> void
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, Map: mrpt.pymrpt.mrpt.maps.CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, Map: mrpt.pymrpt.mrpt.maps.CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(*args, **kwargs)
Overloaded function.
 
1. saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, filNamePrefix: str) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::saveMetricMapRepresentationToFile(const std::string &) const --> void
 
2. saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, filNamePrefix: str) -> None
 
This virtual method saves the map to a file "filNamePrefix"+<
 some_file_extension >, as an image or in any other applicable way (Notice
 that other methods to save the map may be implemented in classes
 implementing this virtual interface). 
 
C++: mrpt::maps::CMetricMap::saveMetricMapRepresentationToFile(const std::string &) const --> void
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map. 
 
C++: mrpt::maps::CMetricMap::squareDistanceToClosestCorrespondence(float, float) const --> float

Data descriptors inherited from COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t:
genericMapParams
insertionOptions
likelihoodOptions
renderingOptions

Data and other attributes inherited from COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t:
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.COctoMapBase_octom...ree_octomap_ColorOcTreeNode_t.TInsertionOptions'>
TLikelihoodOptions = <class 'mrpt.pymrpt.mrpt.maps.COctoMapBase_octom...ee_octomap_ColorOcTreeNode_t.TLikelihoodOptions'>
TRenderingOptions = <class 'mrpt.pymrpt.mrpt.maps.COctoMapBase_octom...ree_octomap_ColorOcTreeNode_t.TRenderingOptions'>

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CColouredPointsMap(CPointsMap)
    A map of 2D/3D points with individual colours (RGB).
 For different color schemes, see CColouredPointsMap::colorScheme
 Colors are defined in the range [0,1].
 
 
mrpt::maps::CPointsMap, mrpt::maps::CMetricMap,
mrpt::serialization::CSerializable
 
 
Method resolution order:
CColouredPointsMap
CPointsMap
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
mrpt.pymrpt.mrpt.opengl.PLY_Importer
mrpt.pymrpt.mrpt.opengl.PLY_Exporter
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CColouredPointsMap::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, o: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, arg0: mrpt.pymrpt.mrpt.maps.CColouredPointsMap) -> None
 
4. __init__(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, arg0: mrpt.pymrpt.mrpt.maps.CColouredPointsMap) -> None
assign(...)
assign(*args, **kwargs)
Overloaded function.
 
1. assign(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, o: mrpt.pymrpt.mrpt.maps.CPointsMap) -> mrpt.pymrpt.mrpt.maps.CColouredPointsMap
 
C++: mrpt::maps::CColouredPointsMap::operator=(const class mrpt::maps::CPointsMap &) --> class mrpt::maps::CColouredPointsMap &
 
2. assign(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, o: mrpt.pymrpt.mrpt.maps.CColouredPointsMap) -> mrpt.pymrpt.mrpt.maps.CColouredPointsMap
 
C++: mrpt::maps::CColouredPointsMap::operator=(const class mrpt::maps::CColouredPointsMap &) --> class mrpt::maps::CColouredPointsMap &
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CColouredPointsMap::clone() const --> class mrpt::rtti::CObject *
colourFromObservation(...)
colourFromObservation(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, obs: mrpt.pymrpt.mrpt.obs.CObservationImage, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
Colour a set of points from a CObservationImage and the global pose of
 the robot 
 
C++: mrpt::maps::CColouredPointsMap::colourFromObservation(const class mrpt::obs::CObservationImage &, const class mrpt::poses::CPose3D &) --> bool
getPointColor(...)
getPointColor(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, index: int, R: float, G: float, B: float) -> None
 
Retrieves a point color (colors range is [0,1]) 
 
C++: mrpt::maps::CColouredPointsMap::getPointColor(size_t, float &, float &, float &) const --> void
getPointColor_fast(...)
getPointColor_fast(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, index: int, R: float, G: float, B: float) -> None
 
Like  but without checking for out-of-index erors 
 
C++: mrpt::maps::CColouredPointsMap::getPointColor_fast(size_t, float &, float &, float &) const --> void
getPointRGB(...)
getPointRGB(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, index: int, x: float, y: float, z: float, R: float, G: float, B: float) -> None
 
Retrieves a point and its color (colors range is [0,1])
 
C++: mrpt::maps::CColouredPointsMap::getPointRGB(size_t, float &, float &, float &, float &, float &, float &) const --> void
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, outObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
Override of the default 3D scene builder to account for the individual
 points' color.
 
C++: mrpt::maps::CColouredPointsMap::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
hasColorPoints(...)
hasColorPoints(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap) -> bool
 
Returns true if the point map has a color field for each point 
 
C++: mrpt::maps::CColouredPointsMap::hasColorPoints() const --> bool
insertPointFast(...)
insertPointFast(*args, **kwargs)
Overloaded function.
 
1. insertPointFast(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, x: float, y: float) -> None
 
2. insertPointFast(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, x: float, y: float, z: float) -> None
 
The virtual method for  *without* calling
 mark_as_modified()   
 
C++: mrpt::maps::CColouredPointsMap::insertPointFast(float, float, float) --> void
insertPointRGB(...)
insertPointRGB(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, x: float, y: float, z: float, R: float, G: float, B: float) -> None
 
Adds a new point given its coordinates and color (colors range is [0,1])
 
C++: mrpt::maps::CColouredPointsMap::insertPointRGB(float, float, float, float, float, float) --> void
reserve(...)
reserve(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, newLength: int) -> None
 
           from CPointsMap
                @{ 
 
C++: mrpt::maps::CColouredPointsMap::reserve(size_t) --> void
resetPointsMinDist(...)
resetPointsMinDist(*args, **kwargs)
Overloaded function.
 
1. resetPointsMinDist(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap) -> None
 
2. resetPointsMinDist(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, defValue: float) -> None
 
Reset the minimum-observed-distance buffer for all the points to a
 predefined value 
 
C++: mrpt::maps::CColouredPointsMap::resetPointsMinDist(float) --> void
resize(...)
resize(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, newLength: int) -> None
 
C++: mrpt::maps::CColouredPointsMap::resize(size_t) --> void
save3D_and_colour_to_text_file(...)
save3D_and_colour_to_text_file(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, file: str) -> bool
 
Save to a text file. In each line contains X Y Z (meters) R G B (range
 [0,1]) for each point in the map.
     Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CColouredPointsMap::save3D_and_colour_to_text_file(const std::string &) const --> bool
setPointColor(...)
setPointColor(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, index: int, R: float, G: float, B: float) -> None
 
Changes just the color of a given point from the map. First index is 0.
 
 
 Throws std::exception on index out of bound.
 
C++: mrpt::maps::CColouredPointsMap::setPointColor(size_t, float, float, float) --> void
setPointColor_fast(...)
setPointColor_fast(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, index: int, R: float, G: float, B: float) -> None
 
Like  but without checking for out-of-index erors 
 
C++: mrpt::maps::CColouredPointsMap::setPointColor_fast(size_t, float, float, float) --> void
setPointRGB(...)
setPointRGB(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, index: int, x: float, y: float, z: float, R: float, G: float, B: float) -> None
 
Changes a given point from map. First index is 0.
 
 
 Throws std::exception on index out of bound.
 
C++: mrpt::maps::CColouredPointsMap::setPointRGB(size_t, float, float, float, float, float, float) --> void
setSize(...)
setSize(self: mrpt.pymrpt.mrpt.maps.CColouredPointsMap, newLength: int) -> None
 
C++: mrpt::maps::CColouredPointsMap::setSize(size_t) --> void

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CColouredPointsMap::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CColouredPointsMap::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
colorScheme

Data and other attributes defined here:
TColourOptions = <class 'mrpt.pymrpt.mrpt.maps.CColouredPointsMap.TColourOptions'>
The definition of parameters for generating colors from laser scans
TColouringMethod = <class 'mrpt.pymrpt.mrpt.maps.CColouredPointsMap.TColouringMethod'>
TMapDefinition = <class 'mrpt.pymrpt.mrpt.maps.CColouredPointsMap.TMapDefinition'>
TMapDefinitionBase = <class 'mrpt.pymrpt.mrpt.maps.CColouredPointsMap.TMapDefinitionBase'>
cmFromHeightRelativeToSensor = <TColouringMethod.cmFromHeightRelativeToSensor: 0>
cmFromHeightRelativeToSensorGray = <TColouringMethod.cmFromHeightRelativeToSensorGray: 1>
cmFromHeightRelativeToSensorJet = <TColouringMethod.cmFromHeightRelativeToSensor: 0>
cmFromIntensityImage = <TColouringMethod.cmFromIntensityImage: 2>

Methods inherited from CPointsMap:
__iadd__(...)
__iadd__(self: mrpt.pymrpt.mrpt.maps.CPointsMap, anotherMap: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
Inserts another map into this one. 
 insertAnotherMap() 
 
C++: mrpt::maps::CPointsMap::operator+=(const class mrpt::maps::CPointsMap &) --> void
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> str
 
Returns a short description of the map. 
 
C++: mrpt::maps::CPointsMap::asString() const --> std::string
boundingBox(...)
boundingBox(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> mrpt.pymrpt.mrpt.math.TBoundingBox_float_t
 
Computes the bounding box of all the points, or (0,0 ,0,0, 0,0) if there
 are no points.
  Results are cached unless the map is somehow modified to avoid repeated
 calculations.
 
C++: mrpt::maps::CPointsMap::boundingBox() const --> struct mrpt::math::TBoundingBox_<float>
changeCoordinatesReference(...)
changeCoordinatesReference(*args, **kwargs)
Overloaded function.
 
1. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CPointsMap, b: mrpt.pymrpt.mrpt.poses.CPose2D) -> None
 
Replace each point 
 by 
 (pose
 compounding operator).
 
C++: mrpt::maps::CPointsMap::changeCoordinatesReference(const class mrpt::poses::CPose2D &) --> void
 
2. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CPointsMap, b: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
Replace each point 
 by 
 (pose
 compounding operator).
 
C++: mrpt::maps::CPointsMap::changeCoordinatesReference(const class mrpt::poses::CPose3D &) --> void
 
3. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CPointsMap, other: mrpt.pymrpt.mrpt.maps.CPointsMap, b: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
Copy all the points from "other" map to "this", replacing each point 
 
 
 by 
 (pose compounding operator).
 
C++: mrpt::maps::CPointsMap::changeCoordinatesReference(const class mrpt::maps::CPointsMap &, const class mrpt::poses::CPose3D &) --> void
clipOutOfRange(...)
clipOutOfRange(self: mrpt.pymrpt.mrpt.maps.CPointsMap, point: mrpt::math::TPoint2D_<double>, maxRange: float) -> None
 
Delete points which are more far than "maxRange" away from the given
 "point".
 
C++: mrpt::maps::CPointsMap::clipOutOfRange(const struct mrpt::math::TPoint2D_<double> &, float) --> void
clipOutOfRangeInZ(...)
clipOutOfRangeInZ(self: mrpt.pymrpt.mrpt.maps.CPointsMap, zMin: float, zMax: float) -> None
 
Delete points out of the given "z" axis range have been removed.
 
C++: mrpt::maps::CPointsMap::clipOutOfRangeInZ(float, float) --> void
compute3DDistanceToMesh(...)
compute3DDistanceToMesh(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap2: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, maxDistForCorrespondence: float, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, correspondencesRatio: float) -> None
 
Computes the matchings between this and another 3D points map.
           This method matches each point in the other map with the centroid of the
         3 closest points in 3D
           from this map (if the distance is below a defined threshold).
 
 
                                          [IN] The other map to compute the
         matching with.
 
 
                                  [IN] The pose of the other map as seen
         from "this".
 
 
   [IN] Maximum 2D linear distance
         between two points to be matched.
 
 
                          [OUT] The detected matchings pairs.
 
 
                  [OUT] The ratio [0,1] of points in
         otherMap with at least one correspondence.
 
 
 determineMatching3D
 
C++: mrpt::maps::CPointsMap::compute3DDistanceToMesh(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, float, class mrpt::tfest::TMatchingPairListTempl<float> &, float &) --> void
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
C++: mrpt::maps::CPointsMap::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
C++: mrpt::maps::CPointsMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
C++: mrpt::maps::CPointsMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
empty(...)
empty(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
STL-like method to check whether the map is empty: 
 
C++: mrpt::maps::CPointsMap::empty() const --> bool
enableFilterByHeight(...)
enableFilterByHeight(*args, **kwargs)
Overloaded function.
 
1. enableFilterByHeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
2. enableFilterByHeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap, enable: bool) -> None
 
Enable/disable the filter-by-height functionality 
 
 setHeightFilterLevels 
 
 Default upon construction is disabled. 
 
C++: mrpt::maps::CPointsMap::enableFilterByHeight(bool) --> void
extractCylinder(...)
extractCylinder(self: mrpt.pymrpt.mrpt.maps.CPointsMap, center: mrpt::math::TPoint2D_<double>, radius: float, zmin: float, zmax: float, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
Extracts the points in the map within a cylinder in 3D defined the
 provided radius and zmin/zmax values.
 
C++: mrpt::maps::CPointsMap::extractCylinder(const struct mrpt::math::TPoint2D_<double> &, const double, const double, const double, class mrpt::maps::CPointsMap *) --> void
extractPoints(...)
extractPoints(*args, **kwargs)
Overloaded function.
 
1. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
2. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap, R: float) -> None
 
3. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap, R: float, G: float) -> None
 
4. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap, R: float, G: float, B: float) -> None
 
Extracts the points in the map within the area defined by two corners.
  The points are coloured according the R,G,B input data.
 
C++: mrpt::maps::CPointsMap::extractPoints(const struct mrpt::math::TPoint3D_<double> &, const struct mrpt::math::TPoint3D_<double> &, class mrpt::maps::CPointsMap *, double, double, double) --> void
getHeightFilterLevels(...)
getHeightFilterLevels(self: mrpt.pymrpt.mrpt.maps.CPointsMap, _z_min: float, _z_max: float) -> None
 
Get the min/max Z levels for points to be actually inserted in the map
 
 
 enableFilterByHeight, setHeightFilterLevels 
 
C++: mrpt::maps::CPointsMap::getHeightFilterLevels(double &, double &) const --> void
getLargestDistanceFromOrigin(...)
getLargestDistanceFromOrigin(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> float
 
This method returns the largest distance from the origin to any of the
 points, such as a sphere centered at the origin with this radius cover
 ALL the points in the map (the results are buffered, such as, if the map
 is not modified, the second call will be much faster than the first one).
 
C++: mrpt::maps::CPointsMap::getLargestDistanceFromOrigin() const --> float
getLargestDistanceFromOriginNoRecompute(...)
getLargestDistanceFromOriginNoRecompute(self: mrpt.pymrpt.mrpt.maps.CPointsMap, output_is_valid: bool) -> float
 
Like  but returns in 
 = false if the distance was not already computed, skipping its
 computation then, unlike getLargestDistanceFromOrigin() 
 
C++: mrpt::maps::CPointsMap::getLargestDistanceFromOriginNoRecompute(bool &) const --> float
getPoint(...)
getPoint(*args, **kwargs)
Overloaded function.
 
1. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Access to a given point from map, as a 2D point. First index is 0.
 
 
 Throws std::exception on index out of bound.
 
 
 setPoint, getPointFast
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, float &, float &, float &) const --> void
 
2. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, float &, float &) const --> void
 
3. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, double &, double &, double &) const --> void
 
4. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, double &, double &) const --> void
 
5. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint2D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, struct mrpt::math::TPoint2D_<double> &) const --> void
 
6. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint3D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, struct mrpt::math::TPoint3D_<double> &) const --> void
getPointFast(...)
getPointFast(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Just like  but without checking out-of-bound index and
 without returning the point weight, just XYZ.
 
C++: mrpt::maps::CPointsMap::getPointFast(size_t, float &, float &, float &) const --> void
getPointWeight(...)
getPointWeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int) -> int
 
Gets the point weight, which is ignored in all classes (defaults to 1)
 but in those which actually store that field (Note: No checks are done
 for out-of-bounds index).  
 
 setPointWeight
 
C++: mrpt::maps::CPointsMap::getPointWeight(size_t) const --> unsigned int
insertAnotherMap(...)
insertAnotherMap(*args, **kwargs)
Overloaded function.
 
1. insertAnotherMap(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CPointsMap, otherPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
2. insertAnotherMap(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CPointsMap, otherPose: mrpt.pymrpt.mrpt.poses.CPose3D, filterOutPointsAtZero: bool) -> None
 
Insert the contents of another map into this one with some geometric
 transformation, without fusing close points.
 
 
 The other map whose points are to be inserted into this
 one.
 
 
 The pose of the other map in the coordinates of THIS map
 
 
 If true, points at (0,0,0) (in the frame of
 reference of `otherMap`) will be assumed to be invalid and will not be
 copied.
 
 
 fuseWith, addFrom
 
C++: mrpt::maps::CPointsMap::insertAnotherMap(const class mrpt::maps::CPointsMap *, const class mrpt::poses::CPose3D &, const bool) --> void
insertPoint(...)
insertPoint(*args, **kwargs)
Overloaded function.
 
1. insertPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x: float, y: float) -> None
 
2. insertPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x: float, y: float, z: float) -> None
 
Provides a way to insert (append) individual points into the map: the
 missing fields of child
 classes (color, weight, etc) are left to their default values
 
C++: mrpt::maps::CPointsMap::insertPoint(float, float, float) --> void
 
3. insertPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, p: mrpt::math::TPoint3D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::insertPoint(const struct mrpt::math::TPoint3D_<double> &) --> void
internal_computeObservationLikelihood(...)
internal_computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CPointsMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
@} 
 
C++: mrpt::maps::CPointsMap::internal_computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
internal_computeObservationLikelihoodPointCloud3D(...)
internal_computeObservationLikelihoodPointCloud3D(self: mrpt.pymrpt.mrpt.maps.CPointsMap, pc_in_map: mrpt.pymrpt.mrpt.poses.CPose3D, xs: float, ys: float, zs: float, num_pts: int) -> float
 
C++: mrpt::maps::CPointsMap::internal_computeObservationLikelihoodPointCloud3D(const class mrpt::poses::CPose3D &, const float *, const float *, const float *, const unsigned long) const --> double
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
Returns true if the map is empty/no observation has been inserted.
 
C++: mrpt::maps::CPointsMap::isEmpty() const --> bool
isFilterByHeightEnabled(...)
isFilterByHeightEnabled(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
Return whether filter-by-height is enabled 
 enableFilterByHeight 
 
C++: mrpt::maps::CPointsMap::isFilterByHeightEnabled() const --> bool
kdtree_distance(...)
kdtree_distance(self: mrpt.pymrpt.mrpt.maps.CPointsMap, p1: float, idx_p2: int, size: int) -> float
 
Returns the distance between the vector "p1[0:size-1]" and the data
 point with index "idx_p2" stored in the class:
 
C++: mrpt::maps::CPointsMap::kdtree_distance(const float *, size_t, size_t) const --> float
kdtree_get_point_count(...)
kdtree_get_point_count(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> int
 
Must return the number of data points
 
C++: mrpt::maps::CPointsMap::kdtree_get_point_count() const --> size_t
kdtree_get_pt(...)
kdtree_get_pt(self: mrpt.pymrpt.mrpt.maps.CPointsMap, idx: int, dim: int) -> float
 
Returns the dim'th component of the idx'th point in the class:
 
C++: mrpt::maps::CPointsMap::kdtree_get_pt(size_t, int) const --> float
load2D_from_text_file(...)
load2D_from_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Load from a text file. Each line should contain an "X Y" coordinate
 pair, separated by whitespaces.
   Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::load2D_from_text_file(const std::string &) --> bool
load2Dor3D_from_text_file(...)
load2Dor3D_from_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str, is_3D: bool) -> bool
 
2D or 3D generic implementation of  and
 load3D_from_text_file 
 
C++: mrpt::maps::CPointsMap::load2Dor3D_from_text_file(const std::string &, const bool) --> bool
load3D_from_text_file(...)
load3D_from_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Load from a text file. Each line should contain an "X Y Z" coordinate
 tuple, separated by whitespaces.
   Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::load3D_from_text_file(const std::string &) --> bool
mark_as_modified(...)
mark_as_modified(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
Users normally don't need to call this. Called by this class or children
 classes, set m_largestDistanceFromOriginIsUpdated=false, invalidates the
 kd-tree cache, and such. 
 
C++: mrpt::maps::CPointsMap::mark_as_modified() const --> void
save2D_to_text_file(...)
save2D_to_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Save to a text file. Each line will contain "X Y" point coordinates.
                Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::save2D_to_text_file(const std::string &) const --> bool
save3D_to_text_file(...)
save3D_to_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Save to a text file. Each line will contain "X Y Z" point coordinates.
     Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::save3D_to_text_file(const std::string &) const --> bool
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.CPointsMap, filNamePrefix: str) -> None
 
This virtual method saves the map to a file "filNamePrefix"+<
 some_file_extension >, as an image or in any other applicable way (Notice
 that other methods to save the map may be implemented in classes
 implementing this virtual interface) 
 
C++: mrpt::maps::CPointsMap::saveMetricMapRepresentationToFile(const std::string &) const --> void
setHeightFilterLevels(...)
setHeightFilterLevels(self: mrpt.pymrpt.mrpt.maps.CPointsMap, _z_min: float, _z_max: float) -> None
 
Set the min/max Z levels for points to be actually inserted in the map
 (only if  was called before). 
 
C++: mrpt::maps::CPointsMap::setHeightFilterLevels(const double, const double) --> void
setPoint(...)
setPoint(*args, **kwargs)
Overloaded function.
 
1. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Changes a given point from map, with Z defaulting to 0 if not provided.
 
 
 Throws std::exception on index out of bound.
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, float, float, float) --> void
 
2. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint2D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, const struct mrpt::math::TPoint2D_<double> &) --> void
 
3. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint3D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, const struct mrpt::math::TPoint3D_<double> &) --> void
 
4. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float) -> None
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, float, float) --> void
setPointFast(...)
setPointFast(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Changes the coordinates of the given point (0-based index), *without*
 checking for out-of-bounds and *without* calling mark_as_modified().
 Also, color, intensity, or other data is left unchanged. 
 
 setPoint 
 
C++: mrpt::maps::CPointsMap::setPointFast(size_t, float, float, float) --> void
setPointWeight(...)
setPointWeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, w: int) -> None
 
Sets the point weight, which is ignored in all classes but those which
 actually store that field (Note: No checks are done for out-of-bounds
 index). 
 
 getPointWeight
 
C++: mrpt::maps::CPointsMap::setPointWeight(size_t, unsigned long) --> void
size(...)
size(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> int
 
Returns the number of stored points in the map.
 
C++: mrpt::maps::CPointsMap::size() const --> size_t
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map.
 
C++: mrpt::maps::CPointsMap::squareDistanceToClosestCorrespondence(float, float) const --> float
squareDistanceToClosestCorrespondenceT(...)
squareDistanceToClosestCorrespondenceT(self: mrpt.pymrpt.mrpt.maps.CPointsMap, p0: mrpt::math::TPoint2D_<double>) -> float
 
C++: mrpt::maps::CPointsMap::squareDistanceToClosestCorrespondenceT(const struct mrpt::math::TPoint2D_<double> &) const --> float

Data descriptors inherited from CPointsMap:
insertionOptions
likelihoodOptions
renderOptions

Data and other attributes inherited from CPointsMap:
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.CPointsMap.TInsertionOptions'>
With this struct options are provided to the observation insertion
process.
 
 
CObservation::insertIntoPointsMap
TLikelihoodOptions = <class 'mrpt.pymrpt.mrpt.maps.CPointsMap.TLikelihoodOptions'>
Options used when evaluating "computeObservationLikelihood" in the
derived classes.
 
 
CObservation::computeObservationLikelihood
TRenderOptions = <class 'mrpt.pymrpt.mrpt.maps.CPointsMap.TRenderOptions'>
Rendering options, used in getAs3DObject()

Methods inherited from CMetricMap:
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
Erase all the contents of the map 
 
C++: mrpt::maps::CMetricMap::clear() --> void
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void

Data descriptors inherited from CMetricMap:
genericMapParams

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Methods inherited from mrpt.pymrpt.mrpt.opengl.PLY_Importer:
getLoadPLYErrorString(...)
getLoadPLYErrorString(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer) -> str
 
Return a description of the error if loadFromPlyFile() returned false,
 or an empty string if the file was loaded without problems. 
 
C++: mrpt::opengl::PLY_Importer::getLoadPLYErrorString() const --> std::string
loadFromPlyFile(...)
loadFromPlyFile(*args, **kwargs)
Overloaded function.
 
1. loadFromPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer, filename: str) -> bool
 
2. loadFromPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer, filename: str, file_comments: List[str]) -> bool
 
3. loadFromPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer, filename: str, file_comments: List[str], file_obj_info: List[str]) -> bool
 
Loads from a PLY file.
 
 
 The filename to open. It can be either in binary or
 text format.
 
 
 If provided (!=nullptr) the list of comment
 strings stored in the file will be returned.
 
 
 If provided (!=nullptr) the list of "object
 info" strings stored in the file will be returned.
 
 
 false on any error in the file format or reading it. To obtain
 more details on the error you can call getLoadPLYErrorString()
 
C++: mrpt::opengl::PLY_Importer::loadFromPlyFile(const std::string &, class std::vector<std::string > *, class std::vector<std::string > *) --> bool

Methods inherited from mrpt.pymrpt.mrpt.opengl.PLY_Exporter:
getSavePLYErrorString(...)
getSavePLYErrorString(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter) -> str
 
Return a description of the error if loadFromPlyFile() returned false,
 or an empty string if the file was loaded without problems. 
 
C++: mrpt::opengl::PLY_Exporter::getSavePLYErrorString() const --> std::string
saveToPlyFile(...)
saveToPlyFile(*args, **kwargs)
Overloaded function.
 
1. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str) -> bool
 
2. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str, save_in_binary: bool) -> bool
 
3. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str, save_in_binary: bool, file_comments: List[str]) -> bool
 
4. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str, save_in_binary: bool, file_comments: List[str], file_obj_info: List[str]) -> bool
 
Saves to a PLY file.
 
 
 The filename to be saved.
 
 
 If provided (!=nullptr) the list of comment
 strings stored in the file will be returned.
 
 
 If provided (!=nullptr) the list of "object
 info" strings stored in the file will be returned.
 
 
 false on any error writing the file. To obtain more details on
 the error you can call getSavePLYErrorString()
 
C++: mrpt::opengl::PLY_Exporter::saveToPlyFile(const std::string &, bool, const class std::vector<std::string > &, const class std::vector<std::string > &) const --> bool

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CGasConcentrationGridMap2D(CRandomFieldGridMap2D)
    CGasConcentrationGridMap2D represents a PDF of gas concentrations over a 2D
area.
 
 There are a number of methods available to build the gas grid-map,
depending on the value of
   "TMapRepresentation maptype" passed in the constructor (see base class
mrpt::maps::CRandomFieldGridMap2D).
 
Update the map with insertIndividualReading() or insertObservation()
 
 
mrpt::maps::CRandomFieldGridMap2D, mrpt::maps::CMetricMap,
mrpt::containers::CDynamicGrid, The application icp-slam,
mrpt::maps::CMultiMetricMap
 
 
Method resolution order:
CGasConcentrationGridMap2D
CRandomFieldGridMap2D
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CGasConcentrationGridMap2D::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D) -> None
 
doc
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation) -> None
 
doc
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation, arg1: float) -> None
 
doc
 
4. __init__(self: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation, arg1: float, arg2: float) -> None
 
doc
 
5. __init__(self: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation, arg1: float, arg2: float, arg3: float) -> None
 
doc
 
6. __init__(self: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation, arg1: float, arg2: float, arg3: float, arg4: float) -> None
 
doc
 
7. __init__(self: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D, mapType: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float) -> None
 
8. __init__(self: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D) -> None
 
9. __init__(self: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D, : mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D) -> mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D
 
C++: mrpt::maps::CGasConcentrationGridMap2D::operator=(const class mrpt::maps::CGasConcentrationGridMap2D &) --> class mrpt::maps::CGasConcentrationGridMap2D &
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CGasConcentrationGridMap2D::clone() const --> class mrpt::rtti::CObject *
getAs3DObject(...)
getAs3DObject(self: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D, meanObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects, varObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
Returns two 3D objects representing the mean and variance maps 
 
C++: mrpt::maps::CGasConcentrationGridMap2D::getAs3DObject(class mrpt::opengl::CSetOfObjects &, class mrpt::opengl::CSetOfObjects &) const --> void
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D, outObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
Returns a 3D object representing the map 
 
C++: mrpt::maps::CGasConcentrationGridMap2D::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
getWindAs3DObject(...)
getWindAs3DObject(self: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D, windObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
Returns the 3D object representing the wind grid information 
 
C++: mrpt::maps::CGasConcentrationGridMap2D::getWindAs3DObject(class std::shared_ptr<class mrpt::opengl::CSetOfObjects> &) const --> void
increaseUncertainty(...)
increaseUncertainty(self: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D, STD_increase_value: float) -> None
 
Increase the kf_std of all cells from the m_map
        This mehod is usually called by the main_map to simulate loss of
confidence in measurements when time passes 
 
C++: mrpt::maps::CGasConcentrationGridMap2D::increaseUncertainty(const double) --> void
simulateAdvection(...)
simulateAdvection(self: mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D, STD_increase_value: float) -> bool
 
Implements the transition model of the gasConcentration map using the
 information of the wind maps  
 
C++: mrpt::maps::CGasConcentrationGridMap2D::simulateAdvection(double) --> bool

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CGasConcentrationGridMap2D::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CGasConcentrationGridMap2D::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
LUT
insertionOptions

Data and other attributes defined here:
TGaussianCell = <class 'mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D.TGaussianCell'>
TGaussianWindTable = <class 'mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D.TGaussianWindTable'>
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D.TInsertionOptions'>
Parameters related with inserting observations into the map:
TMapDefinition = <class 'mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D.TMapDefinition'>
TMapDefinitionBase = <class 'mrpt.pymrpt.mrpt.maps.CGasConcentrationGridMap2D.TMapDefinitionBase'>

Methods inherited from CRandomFieldGridMap2D:
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> str
 
Returns a short description of the map. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::asString() const --> std::string
cell2float(...)
cell2float(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, c: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> float
 
C++: mrpt::maps::CRandomFieldGridMap2D::cell2float(const struct mrpt::maps::TRandomFieldCell &) const --> float
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> None
 
Calls the base CMetricMap::clear
 Declared here to avoid ambiguity between the two clear() in both base
 classes.
 
C++: mrpt::maps::CRandomFieldGridMap2D::clear() --> void
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
See docs in base class: in this class this always returns 0 
 
C++: mrpt::maps::CRandomFieldGridMap2D::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
enableProfiler(...)
enableProfiler(*args, **kwargs)
Overloaded function.
 
1. enableProfiler(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> None
 
2. enableProfiler(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, enable: bool) -> None
 
C++: mrpt::maps::CRandomFieldGridMap2D::enableProfiler(bool) --> void
enableVerbose(...)
enableVerbose(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, enable_verbose: bool) -> None
 
C++: mrpt::maps::CRandomFieldGridMap2D::enableVerbose(bool) --> void
getAsBitmapFile(...)
getAsBitmapFile(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_img: mrpt.pymrpt.mrpt.img.CImage) -> None
 
Returns an image just as described in  
 
C++: mrpt::maps::CRandomFieldGridMap2D::getAsBitmapFile(class mrpt::img::CImage &) const --> void
getAsMatrix(...)
getAsMatrix(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_mat: mrpt.pymrpt.mrpt.math.CMatrixDynamic_double_t) -> None
 
Like saveAsBitmapFile(), but returns the data in matrix form (first row
 in the matrix is the upper (y_max) part of the map) 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getAsMatrix(class mrpt::math::CMatrixDynamic<double> &) const --> void
getMapType(...)
getMapType(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation
 
Return the type of the random-field grid map, according to parameters
 passed on construction. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getMapType() --> enum mrpt::maps::CRandomFieldGridMap2D::TMapRepresentation
getMeanAndCov(...)
getMeanAndCov(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_means: mrpt::math::CVectorDynamic<double>, out_cov: mrpt.pymrpt.mrpt.math.CMatrixDynamic_double_t) -> None
 
Return the mean and covariance vector of the full Kalman filter estimate
 (works for all KF-based methods). 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getMeanAndCov(class mrpt::math::CVectorDynamic<double> &, class mrpt::math::CMatrixDynamic<double> &) const --> void
getMeanAndSTD(...)
getMeanAndSTD(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_means: mrpt::math::CVectorDynamic<double>, out_STD: mrpt::math::CVectorDynamic<double>) -> None
 
Return the mean and STD vectors of the full Kalman filter estimate
 (works for all KF-based methods). 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getMeanAndSTD(class mrpt::math::CVectorDynamic<double> &, class mrpt::math::CVectorDynamic<double> &) const --> void
insertIndividualReading(...)
insertIndividualReading(*args, **kwargs)
Overloaded function.
 
1. insertIndividualReading(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, sensorReading: float, point: mrpt::math::TPoint2D_<double>) -> None
 
2. insertIndividualReading(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, sensorReading: float, point: mrpt::math::TPoint2D_<double>, update_map: bool) -> None
 
3. insertIndividualReading(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, sensorReading: float, point: mrpt::math::TPoint2D_<double>, update_map: bool, time_invariant: bool) -> None
 
4. insertIndividualReading(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, sensorReading: float, point: mrpt::math::TPoint2D_<double>, update_map: bool, time_invariant: bool, reading_stddev: float) -> None
 
Direct update of the map with a reading in a given position of the map,
 using
  the appropriate method according to mapType passed in the constructor.
 
 This is a direct way to update the map, an alternative to the generic
 insertObservation() method which works with mrpt::obs::CObservation
 objects.
 
C++: mrpt::maps::CRandomFieldGridMap2D::insertIndividualReading(const double, const struct mrpt::math::TPoint2D_<double> &, const bool, const bool, const double) --> void
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> bool
 
Returns true if the map is empty/no observation has been inserted (in
 this class it always return false,
 unless redefined otherwise in base classes)
 
C++: mrpt::maps::CRandomFieldGridMap2D::isEmpty() const --> bool
isEnabledVerbose(...)
isEnabledVerbose(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> bool
 
C++: mrpt::maps::CRandomFieldGridMap2D::isEnabledVerbose() const --> bool
isProfilerEnabled(...)
isProfilerEnabled(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> bool
 
C++: mrpt::maps::CRandomFieldGridMap2D::isProfilerEnabled() const --> bool
predictMeasurement(...)
predictMeasurement(*args, **kwargs)
Overloaded function.
 
1. predictMeasurement(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, x: float, y: float, out_predict_response: float, out_predict_response_variance: float, do_sensor_normalization: bool) -> None
 
2. predictMeasurement(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, x: float, y: float, out_predict_response: float, out_predict_response_variance: float, do_sensor_normalization: bool, interp_method: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TGridInterpolationMethod) -> None
 
Returns the prediction of the measurement at some (x,y) coordinates, and
 its certainty (in the form of the expected variance).  
 
C++: mrpt::maps::CRandomFieldGridMap2D::predictMeasurement(const double, const double, double &, double &, bool, const enum mrpt::maps::CRandomFieldGridMap2D::TGridInterpolationMethod) --> void
resize(...)
resize(*args, **kwargs)
Overloaded function.
 
1. resize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, new_x_min: float, new_x_max: float, new_y_min: float, new_y_max: float, defaultValueNewCells: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> None
 
2. resize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, new_x_min: float, new_x_max: float, new_y_min: float, new_y_max: float, defaultValueNewCells: mrpt.pymrpt.mrpt.maps.TRandomFieldCell, additionalMarginMeters: float) -> None
 
Changes the size of the grid, maintaining previous contents. 
 setSize
 
C++: mrpt::maps::CRandomFieldGridMap2D::resize(double, double, double, double, const struct mrpt::maps::TRandomFieldCell &, double) --> void
saveAsBitmapFile(...)
saveAsBitmapFile(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, filName: str) -> None
 
Save the current map as a graphical file (BMP,PNG,...).
 The file format will be derived from the file extension (see
CImage::saveToFile )
  It depends on the map representation model:
                mrAchim: Each pixel is the ratio 
 
 
                mrKalmanFilter: Each pixel is the mean value of the Gaussian that
represents each cell.
 
 
 
         
 
C++: mrpt::maps::CRandomFieldGridMap2D::saveAsBitmapFile(const std::string &) const --> void
saveAsMatlab3DGraph(...)
saveAsMatlab3DGraph(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, filName: str) -> None
 
Save a matlab ".m" file which represents as 3D surfaces the mean and a
 given confidence level for the concentration of each cell.
  This method can only be called in a KF map model. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::saveAsMatlab3DGraph(const std::string &) const --> void
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, filNamePrefix: str) -> None
 
The implementation in this class just calls all the corresponding method
 of the contained metric maps 
 
C++: mrpt::maps::CRandomFieldGridMap2D::saveMetricMapRepresentationToFile(const std::string &) const --> void
setCellsConnectivity(...)
setCellsConnectivity(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, new_connectivity_descriptor: mrpt::maps::CRandomFieldGridMap2D::ConnectivityDescriptor) -> None
 
Sets a custom object to define the connectivity between cells. Must call
 clear() or setSize() afterwards for the changes to take place. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::setCellsConnectivity(const class std::shared_ptr<struct mrpt::maps::CRandomFieldGridMap2D::ConnectivityDescriptor> &) --> void
setMeanAndSTD(...)
setMeanAndSTD(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_means: mrpt::math::CVectorDynamic<double>, out_STD: mrpt::math::CVectorDynamic<double>) -> None
 
Load the mean and STD vectors of the full Kalman filter estimate (works
 for all KF-based methods). 
 
C++: mrpt::maps::CRandomFieldGridMap2D::setMeanAndSTD(class mrpt::math::CVectorDynamic<double> &, class mrpt::math::CVectorDynamic<double> &) --> void
setSize(...)
setSize(*args, **kwargs)
Overloaded function.
 
1. setSize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float) -> None
 
2. setSize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float, fill_value: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> None
 
Changes the size of the grid, erasing previous contents.
  
 
 Optional user-supplied object that
 will visit all grid cells to define their connectivity with neighbors and
 the strength of existing edges. If present, it overrides all options in
 insertionOptions
 
 
 resize
 
C++: mrpt::maps::CRandomFieldGridMap2D::setSize(const double, const double, const double, const double, const double, const struct mrpt::maps::TRandomFieldCell *) --> void
updateMapEstimation(...)
updateMapEstimation(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> None
 
Run the method-specific procedure required to ensure that the mean &
 variances are up-to-date with all inserted observations. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::updateMapEstimation() --> void

Data and other attributes inherited from CRandomFieldGridMap2D:
ConnectivityDescriptor = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.ConnectivityDescriptor'>
Base class for user-supplied objects capable of describing cells
connectivity, used to build prior factors of the MRF graph. 
 
 
setCellsConnectivity()
TGridInterpolationMethod = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TGridInterpolationMethod'>
TInsertionOptionsCommon = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TInsertionOptionsCommon'>
Parameters common to any derived class.
 Derived classes should derive a new struct from this one, plus "public
CLoadableOptions",
 and call the internal_* methods where appropiate to deal with the
variables declared here.
 Derived classes instantions of their "TInsertionOptions" MUST set the
pointer "m_insertOptions_common" upon construction.
TMapRepresentation = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation'>
gimBilinear = <TGridInterpolationMethod.gimBilinear: 1>
gimNearest = <TGridInterpolationMethod.gimNearest: 0>
mrAchim = <TMapRepresentation.mrKernelDM: 0>
mrGMRF_SD = <TMapRepresentation.mrGMRF_SD: 4>
mrKalmanApproximate = <TMapRepresentation.mrKalmanApproximate: 2>
mrKalmanFilter = <TMapRepresentation.mrKalmanFilter: 1>
mrKernelDM = <TMapRepresentation.mrKernelDM: 0>
mrKernelDMV = <TMapRepresentation.mrKernelDMV: 3>

Methods inherited from CMetricMap:
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matching between this and another 2D point map, which
includes finding:
   - The set of points pairs in each map
   - The mean squared distance between corresponding pairs.
 
   The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
   This method is the most time critical one into ICP-like algorithms.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matchings between this and another 3D points map - method
used in 3D-ICP.
  This method finds the set of point pairs in each map.
 
  The method is the most time critical one into ICP-like algorithms.
 
  The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.CMetricMap, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map. 
 
C++: mrpt::maps::CMetricMap::squareDistanceToClosestCorrespondence(float, float) const --> float

Data descriptors inherited from CMetricMap:
genericMapParams

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Methods inherited from mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t:
cellByIndex(...)
cellByIndex(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, cx: int, cy: int) -> mrpt::maps::TRandomFieldCell
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::cellByIndex(unsigned int, unsigned int) --> struct mrpt::maps::TRandomFieldCell *
cellByPos(...)
cellByPos(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, x: float, y: float) -> mrpt::maps::TRandomFieldCell
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::cellByPos(double, double) --> struct mrpt::maps::TRandomFieldCell *
fill(...)
fill(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, value: mrpt::maps::TRandomFieldCell) -> None
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::fill(const struct mrpt::maps::TRandomFieldCell &) --> void
getResolution(...)
getResolution(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getResolution() const --> double
getSizeX(...)
getSizeX(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getSizeX() const --> size_t
getSizeY(...)
getSizeY(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getSizeY() const --> size_t
getXMax(...)
getXMax(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getXMax() const --> double
getXMin(...)
getXMin(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getXMin() const --> double
getYMax(...)
getYMax(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getYMax() const --> double
getYMin(...)
getYMin(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getYMin() const --> double
idx2cxcy(...)
idx2cxcy(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, idx: int, cx: int, cy: int) -> None
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::idx2cxcy(int, int &, int &) const --> void
idx2x(...)
idx2x(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, cx: int) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::idx2x(int) const --> double
idx2y(...)
idx2y(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, cy: int) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::idx2y(int) const --> double
saveToTextFile(...)
saveToTextFile(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, fileName: str) -> bool
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::saveToTextFile(const std::string &) const --> bool
x2idx(...)
x2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, x: float) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::x2idx(double) const --> int
xy2idx(...)
xy2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, x: float, y: float) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::xy2idx(double, double) const --> int
y2idx(...)
y2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, y: float) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::y2idx(double) const --> int

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CHeightGridMap2D(CMetricMap, mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, CHeightGridMap2D_Base)
    Digital Elevation Model (DEM), a mesh or grid representation of a surface
which keeps the estimated height for each (x,y) location.
 Important implemented features are the insertion of 2D laser scans (from
arbitrary 6D poses) and the exportation as 3D scenes.
 
Each cell contains the up-to-date average height from measured falling in
that cell. Algorithms that can be used:
  - mrSimpleAverage: Each cell only stores the current average value.
 
 This class implements generic version of
mrpt::maps::CMetric::insertObservation() accepting these types of sensory
data:
  - mrpt::obs::CObservation2DRangeScan: 2D range scans
  - mrpt::obs::CObservationVelodyneScan
 
 
Method resolution order:
CHeightGridMap2D
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t
CHeightGridMap2D_Base
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CHeightGridMap2D::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D) -> None
 
doc
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, arg0: mrpt::maps::CHeightGridMap2D::TMapRepresentation) -> None
 
doc
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, arg0: mrpt::maps::CHeightGridMap2D::TMapRepresentation, arg1: float) -> None
 
doc
 
4. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, arg0: mrpt::maps::CHeightGridMap2D::TMapRepresentation, arg1: float, arg2: float) -> None
 
doc
 
5. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, arg0: mrpt::maps::CHeightGridMap2D::TMapRepresentation, arg1: float, arg2: float, arg3: float) -> None
 
doc
 
6. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, arg0: mrpt::maps::CHeightGridMap2D::TMapRepresentation, arg1: float, arg2: float, arg3: float, arg4: float) -> None
 
doc
 
7. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, mapType: mrpt::maps::CHeightGridMap2D::TMapRepresentation, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float) -> None
 
8. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D) -> None
 
9. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D) -> None
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D) -> str
 
Returns a short description of the map. 
 
C++: mrpt::maps::CHeightGridMap2D::asString() const --> std::string
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, : mrpt.pymrpt.mrpt.maps.CHeightGridMap2D) -> mrpt.pymrpt.mrpt.maps.CHeightGridMap2D
 
C++: mrpt::maps::CHeightGridMap2D::operator=(const class mrpt::maps::CHeightGridMap2D &) --> class mrpt::maps::CHeightGridMap2D &
cell2float(...)
cell2float(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, c: mrpt.pymrpt.mrpt.maps.THeightGridmapCell) -> float
 
C++: mrpt::maps::CHeightGridMap2D::cell2float(const struct mrpt::maps::THeightGridmapCell &) const --> float
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D) -> None
 
Calls the base CMetricMap::clear
 Declared here to avoid ambiguity between the two clear() in both base
 classes.
 
C++: mrpt::maps::CHeightGridMap2D::clear() --> void
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CHeightGridMap2D::clone() const --> class mrpt::rtti::CObject *
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
See docs in base class: in this class it always returns 0 
 
C++: mrpt::maps::CHeightGridMap2D::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
countObservedCells(...)
countObservedCells(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D) -> int
 
Return the number of cells with at least one height data inserted. 
 
C++: mrpt::maps::CHeightGridMap2D::countObservedCells() const --> size_t
dem_get_resolution(...)
dem_get_resolution(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D) -> float
 
C++: mrpt::maps::CHeightGridMap2D::dem_get_resolution() const --> double
dem_get_size_x(...)
dem_get_size_x(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D) -> int
 
C++: mrpt::maps::CHeightGridMap2D::dem_get_size_x() const --> size_t
dem_get_size_y(...)
dem_get_size_y(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D) -> int
 
C++: mrpt::maps::CHeightGridMap2D::dem_get_size_y() const --> size_t
dem_get_z(...)
dem_get_z(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, x: float, y: float, z_out: float) -> bool
 
C++: mrpt::maps::CHeightGridMap2D::dem_get_z(const double, const double, double &) const --> bool
dem_get_z_by_cell(...)
dem_get_z_by_cell(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, cx: int, cy: int, z_out: float) -> bool
 
C++: mrpt::maps::CHeightGridMap2D::dem_get_z_by_cell(size_t, size_t, double &) const --> bool
dem_update_map(...)
dem_update_map(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D) -> None
 
C++: mrpt::maps::CHeightGridMap2D::dem_update_map() --> void
getMapType(...)
getMapType(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D) -> mrpt.pymrpt.mrpt.maps.CHeightGridMap2D.TMapRepresentation
 
Return the type of the gas distribution map, according to parameters
 passed on construction 
 
C++: mrpt::maps::CHeightGridMap2D::getMapType() --> enum mrpt::maps::CHeightGridMap2D::TMapRepresentation
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, outObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
Returns a 3D object representing the map: by default, it will be a
 mrpt::opengl::CMesh object, unless
   it is specified otherwise in
 mrpt::global_settings::HEIGHTGRIDMAP_EXPORT3D_AS_MESH 
 
C++: mrpt::maps::CHeightGridMap2D::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
insertIndividualPoint(...)
insertIndividualPoint(*args, **kwargs)
Overloaded function.
 
1. insertIndividualPoint(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, x: float, y: float, z: float) -> bool
 
2. insertIndividualPoint(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, x: float, y: float, z: float, params: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base.TPointInsertParams) -> bool
 
C++: mrpt::maps::CHeightGridMap2D::insertIndividualPoint(const double, const double, const double, const struct mrpt::maps::CHeightGridMap2D_Base::TPointInsertParams &) --> bool
internal_clear(...)
internal_clear(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D) -> None
 
C++: mrpt::maps::CHeightGridMap2D::internal_clear() --> void
internal_computeObservationLikelihood(...)
internal_computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
C++: mrpt::maps::CHeightGridMap2D::internal_computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D) -> bool
 
Returns true if the map is empty/no observation has been inserted. 
 
C++: mrpt::maps::CHeightGridMap2D::isEmpty() const --> bool
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D, filNamePrefix: str) -> None
 
C++: mrpt::maps::CHeightGridMap2D::saveMetricMapRepresentationToFile(const std::string &) const --> void

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CHeightGridMap2D::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CHeightGridMap2D::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
insertionOptions
m_mapType

Data and other attributes defined here:
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.CHeightGridMap2D.TInsertionOptions'>
Parameters related with inserting observations into the map
TMapDefinition = <class 'mrpt.pymrpt.mrpt.maps.CHeightGridMap2D.TMapDefinition'>
TMapDefinitionBase = <class 'mrpt.pymrpt.mrpt.maps.CHeightGridMap2D.TMapDefinitionBase'>
TMapRepresentation = <class 'mrpt.pymrpt.mrpt.maps.CHeightGridMap2D.TMapRepresentation'>
mrSimpleAverage = <TMapRepresentation.mrSimpleAverage: 0>

Methods inherited from CMetricMap:
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matching between this and another 2D point map, which
includes finding:
   - The set of points pairs in each map
   - The mean squared distance between corresponding pairs.
 
   The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
   This method is the most time critical one into ICP-like algorithms.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matchings between this and another 3D points map - method
used in 3D-ICP.
  This method finds the set of point pairs in each map.
 
  The method is the most time critical one into ICP-like algorithms.
 
  The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.CMetricMap, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map. 
 
C++: mrpt::maps::CMetricMap::squareDistanceToClosestCorrespondence(float, float) const --> float

Data descriptors inherited from CMetricMap:
genericMapParams

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Methods inherited from mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t:
cellByIndex(...)
cellByIndex(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, cx: int, cy: int) -> mrpt::maps::THeightGridmapCell
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::cellByIndex(unsigned int, unsigned int) --> struct mrpt::maps::THeightGridmapCell *
cellByPos(...)
cellByPos(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, x: float, y: float) -> mrpt::maps::THeightGridmapCell
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::cellByPos(double, double) --> struct mrpt::maps::THeightGridmapCell *
fill(...)
fill(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, value: mrpt::maps::THeightGridmapCell) -> None
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::fill(const struct mrpt::maps::THeightGridmapCell &) --> void
getResolution(...)
getResolution(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::getResolution() const --> double
getSizeX(...)
getSizeX(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::getSizeX() const --> size_t
getSizeY(...)
getSizeY(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::getSizeY() const --> size_t
getXMax(...)
getXMax(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::getXMax() const --> double
getXMin(...)
getXMin(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::getXMin() const --> double
getYMax(...)
getYMax(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::getYMax() const --> double
getYMin(...)
getYMin(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::getYMin() const --> double
idx2cxcy(...)
idx2cxcy(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, idx: int, cx: int, cy: int) -> None
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::idx2cxcy(int, int &, int &) const --> void
idx2x(...)
idx2x(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, cx: int) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::idx2x(int) const --> double
idx2y(...)
idx2y(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, cy: int) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::idx2y(int) const --> double
resize(...)
resize(*args, **kwargs)
Overloaded function.
 
1. resize(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, new_x_min: float, new_x_max: float, new_y_min: float, new_y_max: float, defaultValueNewCells: mrpt::maps::THeightGridmapCell) -> None
 
2. resize(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, new_x_min: float, new_x_max: float, new_y_min: float, new_y_max: float, defaultValueNewCells: mrpt::maps::THeightGridmapCell, additionalMarginMeters: float) -> None
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::resize(double, double, double, double, const struct mrpt::maps::THeightGridmapCell &, double) --> void
saveToTextFile(...)
saveToTextFile(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, fileName: str) -> bool
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::saveToTextFile(const std::string &) const --> bool
setSize(...)
setSize(*args, **kwargs)
Overloaded function.
 
1. setSize(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float) -> None
 
2. setSize(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float, fill_value: mrpt::maps::THeightGridmapCell) -> None
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::setSize(const double, const double, const double, const double, const double, const struct mrpt::maps::THeightGridmapCell *) --> void
x2idx(...)
x2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, x: float) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::x2idx(double) const --> int
xy2idx(...)
xy2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, x: float, y: float) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::xy2idx(double, double) const --> int
y2idx(...)
y2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_THeightGridmapCell_t, y: float) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::THeightGridmapCell>::y2idx(double) const --> int

Methods inherited from CHeightGridMap2D_Base:
getMinMaxHeight(...)
getMinMaxHeight(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base, z_min: float, z_max: float) -> bool
 
Computes the minimum and maximum height in the grid.
 
 
 False if there is no observed cell yet. 
 
C++: mrpt::maps::CHeightGridMap2D_Base::getMinMaxHeight(float &, float &) const --> bool
intersectLine3D(...)
intersectLine3D(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base, r1: mrpt.pymrpt.mrpt.math.TLine3D, obj: mrpt.pymrpt.mrpt.math.TObject3D) -> bool
 
                @{ 
 
 Gets the intersection between a 3D line and a Height Grid map (taking
 into account the different heights of each individual cell)  
 
C++: mrpt::maps::CHeightGridMap2D_Base::intersectLine3D(const struct mrpt::math::TLine3D &, struct mrpt::math::TObject3D &) const --> bool

Data and other attributes inherited from CHeightGridMap2D_Base:
TPointInsertParams = <class 'mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base.TPointInsertParams'>
Extra params for insertIndividualPoint()

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CHeightGridMap2D_Base(pybind11_builtins.pybind11_object)
    Virtual base class for Digital Elevation Model (DEM) maps. See derived
classes for details.
This class implements those operations which are especific to DEMs.
 
 
Method resolution order:
CHeightGridMap2D_Base
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base, arg0: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base, : mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base) -> mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base
 
C++: mrpt::maps::CHeightGridMap2D_Base::operator=(const class mrpt::maps::CHeightGridMap2D_Base &) --> class mrpt::maps::CHeightGridMap2D_Base &
dem_get_resolution(...)
dem_get_resolution(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base) -> float
 
C++: mrpt::maps::CHeightGridMap2D_Base::dem_get_resolution() const --> double
dem_get_size_x(...)
dem_get_size_x(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base) -> int
 
C++: mrpt::maps::CHeightGridMap2D_Base::dem_get_size_x() const --> size_t
dem_get_size_y(...)
dem_get_size_y(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base) -> int
 
C++: mrpt::maps::CHeightGridMap2D_Base::dem_get_size_y() const --> size_t
dem_get_z(...)
dem_get_z(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base, x: float, y: float, z_out: float) -> bool
 
Get cell 'z' (x,y) by metric coordinates. 
 false if out of bounds
 or un-observed cell. 
 
C++: mrpt::maps::CHeightGridMap2D_Base::dem_get_z(const double, const double, double &) const --> bool
dem_get_z_by_cell(...)
dem_get_z_by_cell(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base, cx: int, cy: int, z_out: float) -> bool
 
Get cell 'z' by (cx,cy) cell indices. 
 false if out of bounds or
 un-observed cell. 
 
C++: mrpt::maps::CHeightGridMap2D_Base::dem_get_z_by_cell(size_t, size_t, double &) const --> bool
dem_update_map(...)
dem_update_map(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base) -> None
 
Ensure that all observations are reflected in the map estimate 
 
C++: mrpt::maps::CHeightGridMap2D_Base::dem_update_map() --> void
getMinMaxHeight(...)
getMinMaxHeight(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base, z_min: float, z_max: float) -> bool
 
Computes the minimum and maximum height in the grid.
 
 
 False if there is no observed cell yet. 
 
C++: mrpt::maps::CHeightGridMap2D_Base::getMinMaxHeight(float &, float &) const --> bool
insertIndividualPoint(...)
insertIndividualPoint(*args, **kwargs)
Overloaded function.
 
1. insertIndividualPoint(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base, x: float, y: float, z: float) -> bool
 
2. insertIndividualPoint(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base, x: float, y: float, z: float, params: mrpt::maps::CHeightGridMap2D_Base::TPointInsertParams) -> bool
 
Update the DEM with one new point.
 
 
 mrpt::maps::CMetricMap::insertObservation() for inserting
 higher-level objects like 2D/3D LIDAR scans
 
 
 true if updated OK, false if (x,y) is out of bounds 
 
C++: mrpt::maps::CHeightGridMap2D_Base::insertIndividualPoint(const double, const double, const double, const struct mrpt::maps::CHeightGridMap2D_Base::TPointInsertParams &) --> bool
intersectLine3D(...)
intersectLine3D(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base, r1: mrpt.pymrpt.mrpt.math.TLine3D, obj: mrpt.pymrpt.mrpt.math.TObject3D) -> bool
 
                @{ 
 
 Gets the intersection between a 3D line and a Height Grid map (taking
 into account the different heights of each individual cell)  
 
C++: mrpt::maps::CHeightGridMap2D_Base::intersectLine3D(const struct mrpt::math::TLine3D &, struct mrpt::math::TObject3D &) const --> bool

Data and other attributes defined here:
TPointInsertParams = <class 'mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base.TPointInsertParams'>
Extra params for insertIndividualPoint()

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CHeightGridMap2D_MRF(CRandomFieldGridMap2D, CHeightGridMap2D_Base)
    CHeightGridMap2D_MRF represents digital-elevation-model over a 2D area, with
uncertainty, based on a Markov-Random-Field (MRF) estimator.
 
 There are a number of methods available to build the gas grid-map,
depending on the value of
   "TMapRepresentation maptype" passed in the constructor (see base class
mrpt::maps::CRandomFieldGridMap2D).
 
Update the map with insertIndividualReading() or insertObservation()
 
 
mrpt::maps::CRandomFieldGridMap2D, mrpt::maps::CMetricMap,
mrpt::containers::CDynamicGrid, The application icp-slam,
mrpt::maps::CMultiMetricMap
 
 
New in MRPT 1.4.0
 
 
Method resolution order:
CHeightGridMap2D_MRF
CRandomFieldGridMap2D
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t
CHeightGridMap2D_Base
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CHeightGridMap2D_MRF::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF) -> None
 
doc
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation) -> None
 
doc
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation, arg1: float) -> None
 
doc
 
4. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation, arg1: float, arg2: float) -> None
 
doc
 
5. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation, arg1: float, arg2: float, arg3: float) -> None
 
doc
 
6. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation, arg1: float, arg2: float, arg3: float, arg4: float) -> None
 
doc
 
7. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation, arg1: float, arg2: float, arg3: float, arg4: float, arg5: float) -> None
 
doc
 
8. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF, mapType: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float, run_first_map_estimation_now: bool) -> None
 
9. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF, arg0: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF) -> None
 
10. __init__(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF, arg0: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF, : mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF) -> mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF
 
C++: mrpt::maps::CHeightGridMap2D_MRF::operator=(const class mrpt::maps::CHeightGridMap2D_MRF &) --> class mrpt::maps::CHeightGridMap2D_MRF &
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CHeightGridMap2D_MRF::clone() const --> class mrpt::rtti::CObject *
dem_get_resolution(...)
dem_get_resolution(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF) -> float
 
C++: mrpt::maps::CHeightGridMap2D_MRF::dem_get_resolution() const --> double
dem_get_size_x(...)
dem_get_size_x(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF) -> int
 
C++: mrpt::maps::CHeightGridMap2D_MRF::dem_get_size_x() const --> size_t
dem_get_size_y(...)
dem_get_size_y(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF) -> int
 
C++: mrpt::maps::CHeightGridMap2D_MRF::dem_get_size_y() const --> size_t
dem_get_z(...)
dem_get_z(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF, x: float, y: float, z_out: float) -> bool
 
C++: mrpt::maps::CHeightGridMap2D_MRF::dem_get_z(const double, const double, double &) const --> bool
dem_get_z_by_cell(...)
dem_get_z_by_cell(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF, cx: int, cy: int, z_out: float) -> bool
 
C++: mrpt::maps::CHeightGridMap2D_MRF::dem_get_z_by_cell(size_t, size_t, double &) const --> bool
dem_update_map(...)
dem_update_map(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF) -> None
 
C++: mrpt::maps::CHeightGridMap2D_MRF::dem_update_map() --> void
getAs3DObject(...)
getAs3DObject(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF, meanObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects, varObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
Returns two 3D objects representing the mean and variance maps 
 
C++: mrpt::maps::CHeightGridMap2D_MRF::getAs3DObject(class mrpt::opengl::CSetOfObjects &, class mrpt::opengl::CSetOfObjects &) const --> void
getCommonInsertOptions(...)
getCommonInsertOptions(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF) -> mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TInsertionOptionsCommon
 
Get the part of the options common to all CRandomFieldGridMap2D classes
 
C++: mrpt::maps::CHeightGridMap2D_MRF::getCommonInsertOptions() --> struct mrpt::maps::CRandomFieldGridMap2D::TInsertionOptionsCommon *
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF, outObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
Returns a 3D object representing the map 
 
C++: mrpt::maps::CHeightGridMap2D_MRF::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
insertIndividualPoint(...)
insertIndividualPoint(*args, **kwargs)
Overloaded function.
 
1. insertIndividualPoint(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF, x: float, y: float, z: float) -> bool
 
2. insertIndividualPoint(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF, x: float, y: float, z: float, params: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base.TPointInsertParams) -> bool
 
C++: mrpt::maps::CHeightGridMap2D_MRF::insertIndividualPoint(const double, const double, const double, const struct mrpt::maps::CHeightGridMap2D_Base::TPointInsertParams &) --> bool
internal_clear(...)
internal_clear(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF) -> None
 
C++: mrpt::maps::CHeightGridMap2D_MRF::internal_clear() --> void
internal_computeObservationLikelihood(...)
internal_computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
C++: mrpt::maps::CHeightGridMap2D_MRF::internal_computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CHeightGridMap2D_MRF::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CHeightGridMap2D_MRF::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
insertionOptions

Data and other attributes defined here:
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF.TInsertionOptions'>
Parameters related with inserting observations into the map
TMapDefinition = <class 'mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF.TMapDefinition'>
TMapDefinitionBase = <class 'mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_MRF.TMapDefinitionBase'>

Methods inherited from CRandomFieldGridMap2D:
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> str
 
Returns a short description of the map. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::asString() const --> std::string
cell2float(...)
cell2float(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, c: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> float
 
C++: mrpt::maps::CRandomFieldGridMap2D::cell2float(const struct mrpt::maps::TRandomFieldCell &) const --> float
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> None
 
Calls the base CMetricMap::clear
 Declared here to avoid ambiguity between the two clear() in both base
 classes.
 
C++: mrpt::maps::CRandomFieldGridMap2D::clear() --> void
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
See docs in base class: in this class this always returns 0 
 
C++: mrpt::maps::CRandomFieldGridMap2D::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
enableProfiler(...)
enableProfiler(*args, **kwargs)
Overloaded function.
 
1. enableProfiler(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> None
 
2. enableProfiler(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, enable: bool) -> None
 
C++: mrpt::maps::CRandomFieldGridMap2D::enableProfiler(bool) --> void
enableVerbose(...)
enableVerbose(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, enable_verbose: bool) -> None
 
C++: mrpt::maps::CRandomFieldGridMap2D::enableVerbose(bool) --> void
getAsBitmapFile(...)
getAsBitmapFile(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_img: mrpt.pymrpt.mrpt.img.CImage) -> None
 
Returns an image just as described in  
 
C++: mrpt::maps::CRandomFieldGridMap2D::getAsBitmapFile(class mrpt::img::CImage &) const --> void
getAsMatrix(...)
getAsMatrix(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_mat: mrpt.pymrpt.mrpt.math.CMatrixDynamic_double_t) -> None
 
Like saveAsBitmapFile(), but returns the data in matrix form (first row
 in the matrix is the upper (y_max) part of the map) 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getAsMatrix(class mrpt::math::CMatrixDynamic<double> &) const --> void
getMapType(...)
getMapType(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation
 
Return the type of the random-field grid map, according to parameters
 passed on construction. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getMapType() --> enum mrpt::maps::CRandomFieldGridMap2D::TMapRepresentation
getMeanAndCov(...)
getMeanAndCov(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_means: mrpt::math::CVectorDynamic<double>, out_cov: mrpt.pymrpt.mrpt.math.CMatrixDynamic_double_t) -> None
 
Return the mean and covariance vector of the full Kalman filter estimate
 (works for all KF-based methods). 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getMeanAndCov(class mrpt::math::CVectorDynamic<double> &, class mrpt::math::CMatrixDynamic<double> &) const --> void
getMeanAndSTD(...)
getMeanAndSTD(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_means: mrpt::math::CVectorDynamic<double>, out_STD: mrpt::math::CVectorDynamic<double>) -> None
 
Return the mean and STD vectors of the full Kalman filter estimate
 (works for all KF-based methods). 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getMeanAndSTD(class mrpt::math::CVectorDynamic<double> &, class mrpt::math::CVectorDynamic<double> &) const --> void
insertIndividualReading(...)
insertIndividualReading(*args, **kwargs)
Overloaded function.
 
1. insertIndividualReading(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, sensorReading: float, point: mrpt::math::TPoint2D_<double>) -> None
 
2. insertIndividualReading(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, sensorReading: float, point: mrpt::math::TPoint2D_<double>, update_map: bool) -> None
 
3. insertIndividualReading(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, sensorReading: float, point: mrpt::math::TPoint2D_<double>, update_map: bool, time_invariant: bool) -> None
 
4. insertIndividualReading(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, sensorReading: float, point: mrpt::math::TPoint2D_<double>, update_map: bool, time_invariant: bool, reading_stddev: float) -> None
 
Direct update of the map with a reading in a given position of the map,
 using
  the appropriate method according to mapType passed in the constructor.
 
 This is a direct way to update the map, an alternative to the generic
 insertObservation() method which works with mrpt::obs::CObservation
 objects.
 
C++: mrpt::maps::CRandomFieldGridMap2D::insertIndividualReading(const double, const struct mrpt::math::TPoint2D_<double> &, const bool, const bool, const double) --> void
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> bool
 
Returns true if the map is empty/no observation has been inserted (in
 this class it always return false,
 unless redefined otherwise in base classes)
 
C++: mrpt::maps::CRandomFieldGridMap2D::isEmpty() const --> bool
isEnabledVerbose(...)
isEnabledVerbose(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> bool
 
C++: mrpt::maps::CRandomFieldGridMap2D::isEnabledVerbose() const --> bool
isProfilerEnabled(...)
isProfilerEnabled(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> bool
 
C++: mrpt::maps::CRandomFieldGridMap2D::isProfilerEnabled() const --> bool
predictMeasurement(...)
predictMeasurement(*args, **kwargs)
Overloaded function.
 
1. predictMeasurement(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, x: float, y: float, out_predict_response: float, out_predict_response_variance: float, do_sensor_normalization: bool) -> None
 
2. predictMeasurement(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, x: float, y: float, out_predict_response: float, out_predict_response_variance: float, do_sensor_normalization: bool, interp_method: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TGridInterpolationMethod) -> None
 
Returns the prediction of the measurement at some (x,y) coordinates, and
 its certainty (in the form of the expected variance).  
 
C++: mrpt::maps::CRandomFieldGridMap2D::predictMeasurement(const double, const double, double &, double &, bool, const enum mrpt::maps::CRandomFieldGridMap2D::TGridInterpolationMethod) --> void
resize(...)
resize(*args, **kwargs)
Overloaded function.
 
1. resize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, new_x_min: float, new_x_max: float, new_y_min: float, new_y_max: float, defaultValueNewCells: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> None
 
2. resize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, new_x_min: float, new_x_max: float, new_y_min: float, new_y_max: float, defaultValueNewCells: mrpt.pymrpt.mrpt.maps.TRandomFieldCell, additionalMarginMeters: float) -> None
 
Changes the size of the grid, maintaining previous contents. 
 setSize
 
C++: mrpt::maps::CRandomFieldGridMap2D::resize(double, double, double, double, const struct mrpt::maps::TRandomFieldCell &, double) --> void
saveAsBitmapFile(...)
saveAsBitmapFile(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, filName: str) -> None
 
Save the current map as a graphical file (BMP,PNG,...).
 The file format will be derived from the file extension (see
CImage::saveToFile )
  It depends on the map representation model:
                mrAchim: Each pixel is the ratio 
 
 
                mrKalmanFilter: Each pixel is the mean value of the Gaussian that
represents each cell.
 
 
 
         
 
C++: mrpt::maps::CRandomFieldGridMap2D::saveAsBitmapFile(const std::string &) const --> void
saveAsMatlab3DGraph(...)
saveAsMatlab3DGraph(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, filName: str) -> None
 
Save a matlab ".m" file which represents as 3D surfaces the mean and a
 given confidence level for the concentration of each cell.
  This method can only be called in a KF map model. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::saveAsMatlab3DGraph(const std::string &) const --> void
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, filNamePrefix: str) -> None
 
The implementation in this class just calls all the corresponding method
 of the contained metric maps 
 
C++: mrpt::maps::CRandomFieldGridMap2D::saveMetricMapRepresentationToFile(const std::string &) const --> void
setCellsConnectivity(...)
setCellsConnectivity(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, new_connectivity_descriptor: mrpt::maps::CRandomFieldGridMap2D::ConnectivityDescriptor) -> None
 
Sets a custom object to define the connectivity between cells. Must call
 clear() or setSize() afterwards for the changes to take place. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::setCellsConnectivity(const class std::shared_ptr<struct mrpt::maps::CRandomFieldGridMap2D::ConnectivityDescriptor> &) --> void
setMeanAndSTD(...)
setMeanAndSTD(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_means: mrpt::math::CVectorDynamic<double>, out_STD: mrpt::math::CVectorDynamic<double>) -> None
 
Load the mean and STD vectors of the full Kalman filter estimate (works
 for all KF-based methods). 
 
C++: mrpt::maps::CRandomFieldGridMap2D::setMeanAndSTD(class mrpt::math::CVectorDynamic<double> &, class mrpt::math::CVectorDynamic<double> &) --> void
setSize(...)
setSize(*args, **kwargs)
Overloaded function.
 
1. setSize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float) -> None
 
2. setSize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float, fill_value: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> None
 
Changes the size of the grid, erasing previous contents.
  
 
 Optional user-supplied object that
 will visit all grid cells to define their connectivity with neighbors and
 the strength of existing edges. If present, it overrides all options in
 insertionOptions
 
 
 resize
 
C++: mrpt::maps::CRandomFieldGridMap2D::setSize(const double, const double, const double, const double, const double, const struct mrpt::maps::TRandomFieldCell *) --> void
updateMapEstimation(...)
updateMapEstimation(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> None
 
Run the method-specific procedure required to ensure that the mean &
 variances are up-to-date with all inserted observations. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::updateMapEstimation() --> void

Data and other attributes inherited from CRandomFieldGridMap2D:
ConnectivityDescriptor = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.ConnectivityDescriptor'>
Base class for user-supplied objects capable of describing cells
connectivity, used to build prior factors of the MRF graph. 
 
 
setCellsConnectivity()
TGridInterpolationMethod = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TGridInterpolationMethod'>
TInsertionOptionsCommon = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TInsertionOptionsCommon'>
Parameters common to any derived class.
 Derived classes should derive a new struct from this one, plus "public
CLoadableOptions",
 and call the internal_* methods where appropiate to deal with the
variables declared here.
 Derived classes instantions of their "TInsertionOptions" MUST set the
pointer "m_insertOptions_common" upon construction.
TMapRepresentation = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation'>
gimBilinear = <TGridInterpolationMethod.gimBilinear: 1>
gimNearest = <TGridInterpolationMethod.gimNearest: 0>
mrAchim = <TMapRepresentation.mrKernelDM: 0>
mrGMRF_SD = <TMapRepresentation.mrGMRF_SD: 4>
mrKalmanApproximate = <TMapRepresentation.mrKalmanApproximate: 2>
mrKalmanFilter = <TMapRepresentation.mrKalmanFilter: 1>
mrKernelDM = <TMapRepresentation.mrKernelDM: 0>
mrKernelDMV = <TMapRepresentation.mrKernelDMV: 3>

Methods inherited from CMetricMap:
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matching between this and another 2D point map, which
includes finding:
   - The set of points pairs in each map
   - The mean squared distance between corresponding pairs.
 
   The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
   This method is the most time critical one into ICP-like algorithms.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matchings between this and another 3D points map - method
used in 3D-ICP.
  This method finds the set of point pairs in each map.
 
  The method is the most time critical one into ICP-like algorithms.
 
  The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.CMetricMap, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map. 
 
C++: mrpt::maps::CMetricMap::squareDistanceToClosestCorrespondence(float, float) const --> float

Data descriptors inherited from CMetricMap:
genericMapParams

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Methods inherited from mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t:
cellByIndex(...)
cellByIndex(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, cx: int, cy: int) -> mrpt::maps::TRandomFieldCell
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::cellByIndex(unsigned int, unsigned int) --> struct mrpt::maps::TRandomFieldCell *
cellByPos(...)
cellByPos(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, x: float, y: float) -> mrpt::maps::TRandomFieldCell
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::cellByPos(double, double) --> struct mrpt::maps::TRandomFieldCell *
fill(...)
fill(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, value: mrpt::maps::TRandomFieldCell) -> None
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::fill(const struct mrpt::maps::TRandomFieldCell &) --> void
getResolution(...)
getResolution(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getResolution() const --> double
getSizeX(...)
getSizeX(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getSizeX() const --> size_t
getSizeY(...)
getSizeY(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getSizeY() const --> size_t
getXMax(...)
getXMax(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getXMax() const --> double
getXMin(...)
getXMin(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getXMin() const --> double
getYMax(...)
getYMax(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getYMax() const --> double
getYMin(...)
getYMin(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getYMin() const --> double
idx2cxcy(...)
idx2cxcy(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, idx: int, cx: int, cy: int) -> None
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::idx2cxcy(int, int &, int &) const --> void
idx2x(...)
idx2x(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, cx: int) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::idx2x(int) const --> double
idx2y(...)
idx2y(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, cy: int) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::idx2y(int) const --> double
saveToTextFile(...)
saveToTextFile(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, fileName: str) -> bool
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::saveToTextFile(const std::string &) const --> bool
x2idx(...)
x2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, x: float) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::x2idx(double) const --> int
xy2idx(...)
xy2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, x: float, y: float) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::xy2idx(double, double) const --> int
y2idx(...)
y2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, y: float) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::y2idx(double) const --> int

Methods inherited from CHeightGridMap2D_Base:
getMinMaxHeight(...)
getMinMaxHeight(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base, z_min: float, z_max: float) -> bool
 
Computes the minimum and maximum height in the grid.
 
 
 False if there is no observed cell yet. 
 
C++: mrpt::maps::CHeightGridMap2D_Base::getMinMaxHeight(float &, float &) const --> bool
intersectLine3D(...)
intersectLine3D(self: mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base, r1: mrpt.pymrpt.mrpt.math.TLine3D, obj: mrpt.pymrpt.mrpt.math.TObject3D) -> bool
 
                @{ 
 
 Gets the intersection between a 3D line and a Height Grid map (taking
 into account the different heights of each individual cell)  
 
C++: mrpt::maps::CHeightGridMap2D_Base::intersectLine3D(const struct mrpt::math::TLine3D &, struct mrpt::math::TObject3D &) const --> bool

Data and other attributes inherited from CHeightGridMap2D_Base:
TPointInsertParams = <class 'mrpt.pymrpt.mrpt.maps.CHeightGridMap2D_Base.TPointInsertParams'>
Extra params for insertIndividualPoint()

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CLandmark(mrpt.pymrpt.mrpt.serialization.CSerializable)
    The class for storing "landmarks" (visual or laser-scan-extracted
features,...)
 
 The descriptors for each kind of descriptor are stored in the vector
"features", which
  will typically consists of only 1 element, or 2 elements for landmarks
obtained from stereo images.
 
 
CLandmarksMap
 
 
Method resolution order:
CLandmark
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CLandmark) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CLandmark::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CLandmark) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CLandmark, arg0: mrpt.pymrpt.mrpt.maps.CLandmark) -> None
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CLandmark, arg0: mrpt.pymrpt.mrpt.maps.CLandmark) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CLandmark, : mrpt.pymrpt.mrpt.maps.CLandmark) -> mrpt.pymrpt.mrpt.maps.CLandmark
 
C++: mrpt::maps::CLandmark::operator=(const class mrpt::maps::CLandmark &) --> class mrpt::maps::CLandmark &
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CLandmark) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CLandmark::clone() const --> class mrpt::rtti::CObject *
createOneFeature(...)
createOneFeature(self: mrpt.pymrpt.mrpt.maps.CLandmark) -> None
 
Creates one feature in the vector "features", calling the appropriate
 constructor of the smart pointer, so after calling this method
 "features[0]" is a valid pointer to a CFeature object.
 
C++: mrpt::maps::CLandmark::createOneFeature() --> void
getPose(...)
getPose(*args, **kwargs)
Overloaded function.
 
1. getPose(self: mrpt.pymrpt.mrpt.maps.CLandmark, p: mrpt.pymrpt.mrpt.poses.CPointPDFGaussian) -> None
 
Returns the pose as an object:
 
C++: mrpt::maps::CLandmark::getPose(class mrpt::poses::CPointPDFGaussian &) const --> void
 
2. getPose(self: mrpt.pymrpt.mrpt.maps.CLandmark, p: mrpt.pymrpt.mrpt.poses.CPoint3D, COV: mrpt.pymrpt.mrpt.math.CMatrixDynamic_double_t) -> None
 
C++: mrpt::maps::CLandmark::getPose(class mrpt::poses::CPoint3D &, class mrpt::math::CMatrixDynamic<double> &) const --> void
getType(...)
getType(self: mrpt.pymrpt.mrpt.maps.CLandmark) -> mrpt.pymrpt.mrpt.vision.TKeyPointMethod
 
Gets the type of the first feature in its feature vector. The vector
 must not be empty.
 
C++: mrpt::maps::CLandmark::getType() const --> enum mrpt::vision::TKeyPointMethod
setPose(...)
setPose(self: mrpt.pymrpt.mrpt.maps.CLandmark, p: mrpt.pymrpt.mrpt.poses.CPointPDFGaussian) -> None
 
Sets the pose from an object:
 
C++: mrpt::maps::CLandmark::setPose(const class mrpt::poses::CPointPDFGaussian &) --> void

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CLandmark::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CLandmark::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
ID
features
normal
pose_cov_11
pose_cov_12
pose_cov_13
pose_cov_22
pose_cov_23
pose_cov_33
pose_mean
seenTimesCount
timestampLastSeen

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CLandmarksMap(CMetricMap)
    A class for storing a map of 3D probabilistic landmarks.
 
 Currently these types of landmarks are defined: (see mrpt::maps::CLandmark)
               - For "visual landmarks" from images: features with associated
descriptors.
               - For laser scanners: each of the range measuremnts, as "occupancy"
landmarks.
               - For grid maps: "Panoramic descriptor" feature points.
               - For range-only localization and SLAM: Beacons. It is also supported
the simulation of expected beacon-to-sensor readings, observation
likelihood,...
 
How to load landmarks from observations:
 When invoking CLandmarksMap::insertObservation(), the values in
CLandmarksMap::insertionOptions will
    determinate the kind of landmarks that will be extracted and fused into
the map. Supported feature
    extraction processes are listed next:
 
 
  Observation class: Generated Landmarks:
Comments: 
  CObservationImage vlSIFT 1) A SIFT feature is
created for each SIFT detected in the image,
                  2) Correspondences between SIFTs features and existing ones are
finded by computeMatchingWith3DLandmarks,
                  3) The corresponding feaures are fused, and the new ones added,
with an initial uncertainty according to insertionOptions 
  CObservationStereoImages vlSIFT  Each image is
separately procesed by the method for CObservationImage observations 
 
  CObservationStereoImages vlColor  TODO... 
 
  CObservation2DRangeScan glOccupancy  A landmark is
added for each range in the scan, with its appropiate covariance matrix derived
from the jacobians matrixes.  
 
 
 
CMetricMap
 
 
Method resolution order:
CLandmarksMap
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CLandmarksMap::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap) -> None
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap) -> str
 
Returns a short description of the map. 
 
C++: mrpt::maps::CLandmarksMap::asString() const --> std::string
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, : mrpt.pymrpt.mrpt.maps.CLandmarksMap) -> mrpt.pymrpt.mrpt.maps.CLandmarksMap
 
C++: mrpt::maps::CLandmarksMap::operator=(const class mrpt::maps::CLandmarksMap &) --> class mrpt::maps::CLandmarksMap &
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap) -> None
 
C++: mrpt::maps::CLandmarksMap::auxParticleFilterCleanUp() --> void
changeCoordinatesReference(...)
changeCoordinatesReference(*args, **kwargs)
Overloaded function.
 
1. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, newOrg: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
Changes the reference system of the map to a given 3D pose.
 
C++: mrpt::maps::CLandmarksMap::changeCoordinatesReference(const class mrpt::poses::CPose3D &) --> void
 
2. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, newOrg: mrpt.pymrpt.mrpt.poses.CPose3D, otherMap: mrpt.pymrpt.mrpt.maps.CLandmarksMap) -> None
 
Changes the reference system of the map "otherMap" and save the result
 in "this" map.
 
C++: mrpt::maps::CLandmarksMap::changeCoordinatesReference(const class mrpt::poses::CPose3D &, const class mrpt::maps::CLandmarksMap *) --> void
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CLandmarksMap::clone() const --> class mrpt::rtti::CObject *
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
** END FAMD ****
 
C++: mrpt::maps::CLandmarksMap::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
computeLikelihood_RSLC_2007(...)
computeLikelihood_RSLC_2007(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, s: mrpt.pymrpt.mrpt.maps.CLandmarksMap, sensorPose: mrpt.pymrpt.mrpt.poses.CPose2D) -> float
 
Computes the (logarithmic) likelihood function for a sensed observation
          "o" according to "this" map.
   This is the implementation of the algorithm reported in the paper:
                        J.L. Blanco, J. Gonzalez, and J.A. Fernandez-Madrigal, "A
          Consensus-based Approach for Estimating the Observation Likelihood of
          Accurate Range Sensors", in IEEE International Conference on Robotics and
          Automation (ICRA), Rome (Italy), Apr 10-14, 2007
 
C++: mrpt::maps::CLandmarksMap::computeLikelihood_RSLC_2007(const class mrpt::maps::CLandmarksMap *, const class mrpt::poses::CPose2D &) const --> double
computeMatchingWith2D(...)
computeMatchingWith2D(*args, **kwargs)
Overloaded function.
 
1. computeMatchingWith2D(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, maxDistForCorrespondence: float, maxAngularDistForCorrespondence: float, angularDistPivotPoint: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, correspondencesRatio: float) -> None
 
2. computeMatchingWith2D(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, maxDistForCorrespondence: float, maxAngularDistForCorrespondence: float, angularDistPivotPoint: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, correspondencesRatio: float, sumSqrDist: float) -> None
 
3. computeMatchingWith2D(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, maxDistForCorrespondence: float, maxAngularDistForCorrespondence: float, angularDistPivotPoint: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, correspondencesRatio: float, sumSqrDist: float, onlyKeepTheClosest: bool) -> None
 
4. computeMatchingWith2D(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, maxDistForCorrespondence: float, maxAngularDistForCorrespondence: float, angularDistPivotPoint: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, correspondencesRatio: float, sumSqrDist: float, onlyKeepTheClosest: bool, onlyUniqueRobust: bool) -> None
 
C++: mrpt::maps::CLandmarksMap::computeMatchingWith2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, float, float, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, float &, float *, bool, bool) const --> void
fuseWith(...)
fuseWith(*args, **kwargs)
Overloaded function.
 
1. fuseWith(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, other: mrpt.pymrpt.mrpt.maps.CLandmarksMap) -> None
 
2. fuseWith(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, other: mrpt.pymrpt.mrpt.maps.CLandmarksMap, justInsertAllOfThem: bool) -> None
 
Fuses the contents of another map with this one, updating "this" object
 with the result.
  This process involves fusing corresponding landmarks, then adding the
 new ones.
  
 
 The other landmarkmap, whose landmarks will be inserted
 into "this"
  
 
 If set to "true", all the landmarks in
 "other" will be inserted into "this" without checking for possible
 correspondences (may appear duplicates ones, etc...)
 
C++: mrpt::maps::CLandmarksMap::fuseWith(class mrpt::maps::CLandmarksMap &, bool) --> void
getMapMaxID(...)
getMapMaxID(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap) -> int
 
C++: mrpt::maps::CLandmarksMap::getMapMaxID() --> long
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, outObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
Returns a 3D object representing the map.
 
 
 COLOR_LANDMARKS_IN_3DSCENES
 
C++: mrpt::maps::CLandmarksMap::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
internal_computeObservationLikelihood(...)
internal_computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the (logarithmic) likelihood that a given observation was taken
from a given pose in the world being modeled with this map.
 
  In the current implementation, this method behaves in a different way
according to the nature of
   the observation's class:
                - "mrpt::obs::CObservation2DRangeScan": This calls
"computeLikelihood_RSLC_2007".
                - "mrpt::obs::CObservationStereoImages": This calls
"computeLikelihood_SIFT_LandmarkMap".
 
  Observation class: Generated
Landmarks: Comments: 
  CObservationImage vlSIFT 1) A SIFT feature is
created for each SIFT detected in the image,
          2) Correspondences between SIFTs features and existing ones
are found by computeMatchingWith3DLandmarks,
                   3) The corresponding feaures are fused, and the new ones
 added,
with an initial uncertainty according to insertionOptions 
  CObservationStereoImages vlSIFT  Each image is
separately procesed by the method for CObservationImage observations 
 
  CObservationStereoImages vlColor  TODO...
 
  CObservation2DRangeScan glOccupancy  A
landmark is added for each range in the scan, with its appropiate
covariance matrix derived from the jacobians matrixes.  
 
 
 
 The robot's pose the observation is supposed to be taken
from.
 
 
 The observation.
 
 
 This method returns a likelihood value > 0.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CLandmarksMap::internal_computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap) -> bool
 
Returns true if the map is empty/no observation has been inserted.
 
C++: mrpt::maps::CLandmarksMap::isEmpty() const --> bool
loadSiftFeaturesFromImageObservation(...)
loadSiftFeaturesFromImageObservation(*args, **kwargs)
Overloaded function.
 
1. loadSiftFeaturesFromImageObservation(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, obs: mrpt.pymrpt.mrpt.obs.CObservationImage) -> None
 
2. loadSiftFeaturesFromImageObservation(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, obs: mrpt.pymrpt.mrpt.obs.CObservationImage, feat_options: mrpt.pymrpt.mrpt.vision.CFeatureExtraction.TOptions) -> None
 
Loads into this landmarks map the SIFT features extracted from an image
 observation (Previous contents of map will be erased)
  The robot is assumed to be at the origin of the map.
  Some options may be applicable from "insertionOptions"
 (insertionOptions.SIFTsLoadDistanceOfTheMean)
 
  
 Optionally, you can pass here parameters for
 changing the default SIFT detector settings.
 
C++: mrpt::maps::CLandmarksMap::loadSiftFeaturesFromImageObservation(const class mrpt::obs::CObservationImage &, const struct mrpt::vision::CFeatureExtraction::TOptions &) --> void
loadSiftFeaturesFromStereoImageObservation(...)
loadSiftFeaturesFromStereoImageObservation(*args, **kwargs)
Overloaded function.
 
1. loadSiftFeaturesFromStereoImageObservation(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, obs: mrpt.pymrpt.mrpt.obs.CObservationStereoImages, fID: int) -> None
 
2. loadSiftFeaturesFromStereoImageObservation(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, obs: mrpt.pymrpt.mrpt.obs.CObservationStereoImages, fID: int, feat_options: mrpt.pymrpt.mrpt.vision.CFeatureExtraction.TOptions) -> None
 
Loads into this landmarks map the SIFT features extracted from an
 observation consisting of a pair of stereo-image (Previous contents of
 map will be erased)
  The robot is assumed to be at the origin of the map.
  Some options may be applicable from "insertionOptions"
 
  
 Optionally, you can pass here parameters for
 changing the default SIFT detector settings.
 
C++: mrpt::maps::CLandmarksMap::loadSiftFeaturesFromStereoImageObservation(const class mrpt::obs::CObservationStereoImages &, long, const struct mrpt::vision::CFeatureExtraction::TOptions &) --> void
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, filNamePrefix: str) -> None
 
This virtual method saves the map to a file "filNamePrefix"+<
some_file_extension >, as an image or in any other applicable way (Notice
that other methods to save the map may be implemented in classes
implementing this virtual interface).
  In the case of this class, these files are generated:
                - "filNamePrefix"+"_3D.m": A script for MATLAB for drawing landmarks
as
3D ellipses.
                - "filNamePrefix"+"_3D.3DScene": A 3D scene with a "ground plane
grid"
and the set of ellipsoids in 3D.
 
C++: mrpt::maps::CLandmarksMap::saveMetricMapRepresentationToFile(const std::string &) const --> void
saveToMATLABScript2D(...)
saveToMATLABScript2D(*args, **kwargs)
Overloaded function.
 
1. saveToMATLABScript2D(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, file: str) -> bool
 
2. saveToMATLABScript2D(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, file: str, style: str) -> bool
 
3. saveToMATLABScript2D(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, file: str, style: str, stdCount: float) -> bool
 
Save to a MATLAB script which displays 2D error ellipses for the map
(top-view, projection on the XY plane).
        
 
                The name of the file to save the script to.
  
 
        The MATLAB-like string for the style of the lines (see
'help plot' in MATLAB for possibilities)
  
 
 The ellipsoids will be drawn from the center to
"stdCount" times the "standard deviations". (default is 2std = 95%
confidence intervals)
 
  
 Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CLandmarksMap::saveToMATLABScript2D(std::string, const char *, float) --> bool
saveToMATLABScript3D(...)
saveToMATLABScript3D(*args, **kwargs)
Overloaded function.
 
1. saveToMATLABScript3D(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, file: str) -> bool
 
2. saveToMATLABScript3D(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, file: str, style: str) -> bool
 
3. saveToMATLABScript3D(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, file: str, style: str, confInterval: float) -> bool
 
Save to a MATLAB script which displays 3D error ellipses for the map.
        
 
                The name of the file to save the script to.
  
 
        The MATLAB-like string for the style of the lines (see
'help plot' in MATLAB for possibilities)
  
 
 The ellipsoids will be drawn from the center to a given
confidence interval in [0,1], e.g. 2 sigmas=0.95 (default is 2std = 0.95
confidence intervals)
 
  
 Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CLandmarksMap::saveToMATLABScript3D(std::string, const char *, float) const --> bool
saveToTextFile(...)
saveToTextFile(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, file: str) -> bool
 
Save to a text file.
  In line "i" there are the (x,y,z) mean values of the i'th landmark +
 type of landmark + # times seen + timestamp + RGB/descriptor + ID
 
   Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CLandmarksMap::saveToTextFile(std::string) --> bool
simulateBeaconReadings(...)
simulateBeaconReadings(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap, in_robotPose: mrpt.pymrpt.mrpt.poses.CPose3D, in_sensorLocationOnRobot: mrpt.pymrpt.mrpt.poses.CPoint3D, out_Observations: mrpt.pymrpt.mrpt.obs.CObservationBeaconRanges) -> None
 
Simulates a noisy reading toward each of the beacons in the landmarks
 map, if any.
 
 
 This robot pose is used to simulate the ranges to
 each beacon.
 
 
 The 3D position of the sensor on the
 robot
 
 
 The results will be stored here. NOTICE that the
 fields
 "CObservationBeaconRanges::minSensorDistance","CObservationBeaconRanges::maxSensorDistance"
 and "CObservationBeaconRanges::stdError" MUST BE FILLED OUT before
 calling this function.
 An observation will be generated for each beacon in the map, but notice
 that some of them may be missed if out of the sensor maximum range.
 
C++: mrpt::maps::CLandmarksMap::simulateBeaconReadings(const class mrpt::poses::CPose3D &, const class mrpt::poses::CPoint3D &, class mrpt::obs::CObservationBeaconRanges &) const --> void
size(...)
size(self: mrpt.pymrpt.mrpt.maps.CLandmarksMap) -> int
 
Returns the stored landmarks count.
 
C++: mrpt::maps::CLandmarksMap::size() const --> size_t

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CLandmarksMap::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CLandmarksMap::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
fuseOptions
insertionOptions
insertionResults
landmarks
likelihoodOptions

Data and other attributes defined here:
TCustomSequenceLandmarks = <class 'mrpt.pymrpt.mrpt.maps.CLandmarksMap.TCustomSequenceLandmarks'>
The list of landmarks: the wrapper class is just for maintaining the
KD-Tree representation
TFuseOptions = <class 'mrpt.pymrpt.mrpt.maps.CLandmarksMap.TFuseOptions'>
With this struct options are provided to the fusion process.
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.CLandmarksMap.TInsertionOptions'>
With this struct options are provided to the observation insertion
process.
TInsertionResults = <class 'mrpt.pymrpt.mrpt.maps.CLandmarksMap.TInsertionResults'>
This struct stores extra results from invoking insertObservation
TLikelihoodOptions = <class 'mrpt.pymrpt.mrpt.maps.CLandmarksMap.TLikelihoodOptions'>
With this struct options are provided to the likelihood computations.
TMapDefinition = <class 'mrpt.pymrpt.mrpt.maps.CLandmarksMap.TMapDefinition'>
TMapDefinitionBase = <class 'mrpt.pymrpt.mrpt.maps.CLandmarksMap.TMapDefinitionBase'>

Methods inherited from CMetricMap:
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
Erase all the contents of the map 
 
C++: mrpt::maps::CMetricMap::clear() --> void
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matching between this and another 2D point map, which
includes finding:
   - The set of points pairs in each map
   - The mean squared distance between corresponding pairs.
 
   The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
   This method is the most time critical one into ICP-like algorithms.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matchings between this and another 3D points map - method
used in 3D-ICP.
  This method finds the set of point pairs in each map.
 
  The method is the most time critical one into ICP-like algorithms.
 
  The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.CMetricMap, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map. 
 
C++: mrpt::maps::CMetricMap::squareDistanceToClosestCorrespondence(float, float) const --> float

Data descriptors inherited from CMetricMap:
genericMapParams

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CLogOddsGridMap2D_signed_char_t(pybind11_builtins.pybind11_object)
    
Method resolution order:
CLogOddsGridMap2D_signed_char_t
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap2D_signed_char_t, arg0: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap2D_signed_char_t) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap2D_signed_char_t) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap2D_signed_char_t, : mrpt.pymrpt.mrpt.maps.CLogOddsGridMap2D_signed_char_t) -> mrpt.pymrpt.mrpt.maps.CLogOddsGridMap2D_signed_char_t
 
C++: mrpt::maps::CLogOddsGridMap2D<signed char>::operator=(const struct mrpt::maps::CLogOddsGridMap2D<signed char> &) --> struct mrpt::maps::CLogOddsGridMap2D<signed char> &
updateCell_fast_occupied(...)
updateCell_fast_occupied(*args, **kwargs)
Overloaded function.
 
1. updateCell_fast_occupied(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap2D_signed_char_t, x: int, y: int, logodd_obs: int, thres: int, mapArray: int, _size_x: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap2D<signed char>::updateCell_fast_occupied(const unsigned int, const unsigned int, const signed char, const signed char, signed char *, const unsigned int) --> void
 
2. updateCell_fast_occupied(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap2D_signed_char_t, theCell: int, logodd_obs: int, thres: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap2D<signed char>::updateCell_fast_occupied(signed char *, const signed char, const signed char) --> void

Static methods defined here:
updateCell_fast_free(...) from builtins.PyCapsule
updateCell_fast_free(*args, **kwargs)
Overloaded function.
 
1. updateCell_fast_free(x: int, y: int, logodd_obs: int, thres: int, mapArray: int, _size_x: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap2D<signed char>::updateCell_fast_free(const unsigned int, const unsigned int, const signed char, const signed char, signed char *, const unsigned int) --> void
 
2. updateCell_fast_free(theCell: int, logodd_obs: int, thres: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap2D<signed char>::updateCell_fast_free(signed char *, const signed char, const signed char) --> void

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CLogOddsGridMap3D_signed_char_t(pybind11_builtins.pybind11_object)
    
Method resolution order:
CLogOddsGridMap3D_signed_char_t
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
__init__(...)
__init__(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap3D_signed_char_t) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap3D_signed_char_t, : mrpt.pymrpt.mrpt.maps.CLogOddsGridMap3D_signed_char_t) -> mrpt.pymrpt.mrpt.maps.CLogOddsGridMap3D_signed_char_t
 
C++: mrpt::maps::CLogOddsGridMap3D<signed char>::operator=(const struct mrpt::maps::CLogOddsGridMap3D<signed char> &) --> struct mrpt::maps::CLogOddsGridMap3D<signed char> &
updateCell_fast_free(...)
updateCell_fast_free(*args, **kwargs)
Overloaded function.
 
1. updateCell_fast_free(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap3D_signed_char_t, theCell: int, logodd_obs: int, thres: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap3D<signed char>::updateCell_fast_free(signed char *, const signed char, const signed char) --> void
 
2. updateCell_fast_free(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap3D_signed_char_t, x: int, y: int, z: int, logodd_obs: int, thres: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap3D<signed char>::updateCell_fast_free(const unsigned int, const unsigned int, const unsigned int, const signed char, const signed char) --> void
updateCell_fast_occupied(...)
updateCell_fast_occupied(*args, **kwargs)
Overloaded function.
 
1. updateCell_fast_occupied(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap3D_signed_char_t, theCell: int, logodd_obs: int, thres: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap3D<signed char>::updateCell_fast_occupied(signed char *, const signed char, const signed char) --> void
 
2. updateCell_fast_occupied(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap3D_signed_char_t, x: int, y: int, z: int, logodd_obs: int, thres: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap3D<signed char>::updateCell_fast_occupied(const unsigned int, const unsigned int, const unsigned int, const signed char, const signed char) --> void

Data descriptors defined here:
m_grid

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CLogOddsGridMapLUT_signed_char_t(pybind11_builtins.pybind11_object)
    
Method resolution order:
CLogOddsGridMapLUT_signed_char_t
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMapLUT_signed_char_t) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMapLUT_signed_char_t, arg0: mrpt.pymrpt.mrpt.maps.CLogOddsGridMapLUT_signed_char_t) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMapLUT_signed_char_t, : mrpt.pymrpt.mrpt.maps.CLogOddsGridMapLUT_signed_char_t) -> mrpt.pymrpt.mrpt.maps.CLogOddsGridMapLUT_signed_char_t
 
C++: mrpt::maps::CLogOddsGridMapLUT<signed char>::operator=(const struct mrpt::maps::CLogOddsGridMapLUT<signed char> &) --> struct mrpt::maps::CLogOddsGridMapLUT<signed char> &
l2p(...)
l2p(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMapLUT_signed_char_t, l: int) -> float
 
C++: mrpt::maps::CLogOddsGridMapLUT<signed char>::l2p(const signed char) --> float
l2p_255(...)
l2p_255(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMapLUT_signed_char_t, l: int) -> int
 
C++: mrpt::maps::CLogOddsGridMapLUT<signed char>::l2p_255(const signed char) --> uint8_t
p2l(...)
p2l(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMapLUT_signed_char_t, p: float) -> int
 
C++: mrpt::maps::CLogOddsGridMapLUT<signed char>::p2l(const float) --> signed char

Data descriptors defined here:
logoddsTable
logoddsTable_255
p2lTable

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CMetricMap(mrpt.pymrpt.mrpt.serialization.CSerializable, mrpt.pymrpt.mrpt.system.CObservable, mrpt.pymrpt.mrpt.Stringifyable, mrpt.pymrpt.mrpt.opengl.Visualizable)
    Declares a virtual base class for all metric maps storage classes.
  In this class virtual methods are provided to allow the insertion
  of any type of "CObservation" objects into the metric map, thus
  updating the map (doesn't matter if it is a 2D/3D grid, a point map, etc.).
 
  Observations don't include any information about the
  robot pose, just the raw observation and information about
  the sensor pose relative to the robot mobile base coordinates origin.
 
  Note that all metric maps implement this mrpt::system::CObservable
interface,
   emitting the following events:
          - mrpt::obs::mrptEventMetricMapClear: Upon call of the ::clear() method.
    - mrpt::obs::mrptEventMetricMapInsert: Upon insertion of an observation
that effectively modifies the map (e.g. inserting an image into a grid map
will NOT raise an event, inserting a laser scan will).
 
 To check what observations are supported by each metric map, see
 
 
 
 All derived class must implement a static class factory
`<metric_map_class>::MapDefinition()` that builds a default
TMetricMapInitializer
 
 
 CObservation, CSensoryFrame, CMultiMetricMap
 
 
Method resolution order:
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CMetricMap::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(self, /, *args, **kwargs)
Initialize self.  See help(type(self)) for accurate signature.
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CMetricMap, : mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt.pymrpt.mrpt.maps.CMetricMap
 
C++: mrpt::maps::CMetricMap::operator=(const class mrpt::maps::CMetricMap &) --> class mrpt::maps::CMetricMap &
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
Erase all the contents of the map 
 
C++: mrpt::maps::CMetricMap::clear() --> void
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
Computes the ratio in [0,1] of correspondences between "this" and the
 "otherMap" map, whose 6D pose relative to "this" is "otherMapPose"
   In the case of a multi-metric map, this returns the average between the
 maps. This method always return 0 for grid maps.
 
 
      [IN] The other map to compute the matching with.
 
 
  [IN] The 6D pose of the other map as seen from
 "this".
 
 
        [IN] Matching parameters
 
 
 The matching ratio [0,1]
 
 
 determineMatching2D
 
C++: mrpt::maps::CMetricMap::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matching between this and another 2D point map, which
includes finding:
   - The set of points pairs in each map
   - The mean squared distance between corresponding pairs.
 
   The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
   This method is the most time critical one into ICP-like algorithms.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matchings between this and another 3D points map - method
used in 3D-ICP.
  This method finds the set of point pairs in each map.
 
  The method is the most time critical one into ICP-like algorithms.
 
  The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> bool
 
Returns true if the map is empty/no observation has been inserted.
 
C++: mrpt::maps::CMetricMap::isEmpty() const --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.CMetricMap, filNamePrefix: str) -> None
 
This virtual method saves the map to a file "filNamePrefix"+<
 some_file_extension >, as an image or in any other applicable way (Notice
 that other methods to save the map may be implemented in classes
 implementing this virtual interface). 
 
C++: mrpt::maps::CMetricMap::saveMetricMapRepresentationToFile(const std::string &) const --> void
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.CMetricMap, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map. 
 
C++: mrpt::maps::CMetricMap::squareDistanceToClosestCorrespondence(float, float) const --> float

Static methods defined here:
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CMetricMap::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
genericMapParams

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
clone(...)
clone(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Returns a deep copy (clone) of the object, indepently of its class. 
 
C++: mrpt::rtti::CObject::clone() const --> class mrpt::rtti::CObject *
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.Stringifyable:
asString(...)
asString(self: mrpt.pymrpt.mrpt.Stringifyable) -> str
 
Returns a human-friendly textual description of the object. For classes
 with a large/complex internal state, only a summary should be returned
 instead of the exhaustive enumeration of all data members.
 
C++: mrpt::Stringifyable::asString() const --> std::string

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.opengl.Visualizable, o: mrpt::opengl::CSetOfObjects) -> None
 
Inserts 3D primitives representing this object into the provided
 container.
 Note that the former contents of `o` are not cleared.
 
 
 getVisualization()
 
C++: mrpt::opengl::Visualizable::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CMultiMetricMap(CMetricMap)
    This class stores any customizable set of metric maps.
 The internal metric maps can be accessed directly by the user as smart
pointers with CMultiMetricMap::mapByIndex() or via `iterator`s.
 The utility of this container is to operate on several maps simultaneously:
update them by inserting observations,
 evaluate the likelihood of one observation by fusing (multiplying) the
likelihoods over the different maps, etc.
 
 These kinds of metric maps can be kept inside (list may be
 incomplete, refer to classes derived from mrpt::maps::CMetricMap):
        - mrpt::maps::CSimplePointsMap: For 2D or 3D range scans, ...
        - mrpt::maps::COccupancyGridMap2D: 2D, horizontal  laser range
    scans, at different altitudes.
        - mrpt::maps::COccupancyGridMap3D: 3D occupancy voxel map.
        - mrpt::maps::COctoMap: For 3D occupancy grids of variable resolution,
    with octrees (based on the library `octomap`).
        - mrpt::maps::CColouredOctoMap: The same than above, but nodes can store
    RGB data appart from occupancy.
        - mrpt::maps::CLandmarksMap: For visual landmarks,etc...
        - mrpt::maps::CGasConcentrationGridMap2D: For gas concentration maps.
        - mrpt::maps::CWirelessPowerGridMap2D: For wifi power maps.
        - mrpt::maps::CBeaconMap: For range-only SLAM.
        - mrpt::maps::CHeightGridMap2D: For elevation maps of height for each
    (x,y) location (Digital elevation model, DEM)
        - mrpt::maps::CHeightGridMap2D_MRF: DEMs as Markov Random Field (MRF)
        - mrpt::maps::CReflectivityGridMap2D: For maps of "reflectivity" for
    each (x,y) location.
        - mrpt::maps::CColouredPointsMap: For point map with color.
        - mrpt::maps::CWeightedPointsMap: For point map with weights (capable of
    "fusing").
 
 See CMultiMetricMap::setListOfMaps() for the method for initializing this
class programmatically.
 See also TSetOfMetricMapInitializers::loadFromConfigFile for a template of
".ini"-like configuration
 file that can be used to define which maps to create and all their
parameters.
 Alternatively, the list of maps is public so it can be directly
manipulated/accessed in CMultiMetricMap::maps
 
  Configuring the list of maps: Alternatives
 --------------------------------------------
 
  **Method #1: Using map definition structures**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  **Method #2: Using a configuration file**
 See TSetOfMetricMapInitializers::loadFromConfigFile() for details on expected
file format.
 
 
 
 
 
 
 
 
 
  **Method #3: Manual manipulation**
 
 
 
 
 
 
 
 
 
 [New in MRPT 1.3.0]: `likelihoodMapSelection`, which selected the map
to be used when
  computing the likelihood of an observation, has been removed. Use the
`enableObservationLikelihood`
  property of each individual map declaration.
 
 
 [New in MRPT 1.3.0]: `enableInsertion_{pointsMap,...}` have been also
removed.
  Use the `enableObservationInsertion` property of each map declaration.
 
 
 This class belongs to [mrpt-slam] instead of [mrpt-maps] due to the
dependency on map classes in mrpt-vision.
 
 
 CMetricMap
 
 
Method resolution order:
CMultiMetricMap
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMap) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CMultiMetricMap::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMap) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMap, initializers: mrpt.pymrpt.mrpt.maps.TSetOfMetricMapInitializers) -> None
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMap, arg0: mrpt.pymrpt.mrpt.maps.CMultiMetricMap) -> None
 
4. __init__(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMap, arg0: mrpt.pymrpt.mrpt.maps.CMultiMetricMap) -> None
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMap) -> str
 
Returns a short description of the map. 
 
C++: mrpt::maps::CMultiMetricMap::asString() const --> std::string
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMap, o: mrpt.pymrpt.mrpt.maps.CMultiMetricMap) -> mrpt.pymrpt.mrpt.maps.CMultiMetricMap
 
Creates a deep copy 
 
C++: mrpt::maps::CMultiMetricMap::operator=(const class mrpt::maps::CMultiMetricMap &) --> class mrpt::maps::CMultiMetricMap &
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMap) -> None
 
C++: mrpt::maps::CMultiMetricMap::auxParticleFilterCleanUp() --> void
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMap) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CMultiMetricMap::clone() const --> class mrpt::rtti::CObject *
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
C++: mrpt::maps::CMultiMetricMap::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
C++: mrpt::maps::CMultiMetricMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMap) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMultiMetricMap::getAsSimplePointsMap() const --> const class mrpt::maps::CSimplePointsMap *
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMap, outObj: mrpt::opengl::CSetOfObjects) -> None
 
C++: mrpt::maps::CMultiMetricMap::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMap) -> bool
 
Returns true if **all** maps returns true in their isEmpty() method 
 
C++: mrpt::maps::CMultiMetricMap::isEmpty() const --> bool
mapByIndex(...)
mapByIndex(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMap, idx: int) -> mrpt.pymrpt.mrpt.maps.CMetricMap
 
Gets the i-th map 
 std::runtime_error On out-of-bounds 
 
C++: mrpt::maps::CMultiMetricMap::mapByIndex(size_t) const --> class std::shared_ptr<class mrpt::maps::CMetricMap>
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMap, filNamePrefix: str) -> None
 
C++: mrpt::maps::CMultiMetricMap::saveMetricMapRepresentationToFile(const std::string &) const --> void
setListOfMaps(...)
setListOfMaps(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMap, init: mrpt.pymrpt.mrpt.maps.TSetOfMetricMapInitializers) -> None
 
Sets the list of internal map according to the passed list of map
 initializers (current maps will be deleted) 
 
C++: mrpt::maps::CMultiMetricMap::setListOfMaps(const class mrpt::maps::TSetOfMetricMapInitializers &) --> void

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CMultiMetricMap::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CMultiMetricMap::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
maps

Methods inherited from CMetricMap:
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
Erase all the contents of the map 
 
C++: mrpt::maps::CMetricMap::clear() --> void
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matchings between this and another 3D points map - method
used in 3D-ICP.
  This method finds the set of point pairs in each map.
 
  The method is the most time critical one into ICP-like algorithms.
 
  The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.CMetricMap, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map. 
 
C++: mrpt::maps::CMetricMap::squareDistanceToClosestCorrespondence(float, float) const --> float

Data descriptors inherited from CMetricMap:
genericMapParams

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CMultiMetricMapPDF(mrpt.pymrpt.mrpt.serialization.CSerializable, mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, mrpt.pymrpt.mrpt.slam.PF_implementation_mrpt_maps_CRBPFParticleData_mrpt_maps_CMultiMetricMapPDF_mrpt_bayes_particle_storage_mode_POINTER_t)
    Declares a class that represents a Rao-Blackwellized set of particles for
solving the SLAM problem (This class is the base of RBPF-SLAM applications).
  This class is used internally by the map building algorithm in
"mrpt::slam::CMetricMapBuilderRBPF"
 
 
mrpt::slam::CMetricMapBuilderRBPF
 
 
Method resolution order:
CMultiMetricMapPDF
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t
mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t
mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable
mrpt.pymrpt.mrpt.slam.PF_implementation_mrpt_maps_CRBPFParticleData_mrpt_maps_CMultiMetricMapPDF_mrpt_bayes_particle_storage_mode_POINTER_t
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CMultiMetricMapPDF::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
PF_SLAM_computeObservationLikelihoodForParticle(...)
PF_SLAM_computeObservationLikelihoodForParticle(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions, particleIndexForMap: int, observation: mrpt.pymrpt.mrpt.obs.CSensoryFrame, x: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Evaluate the observation likelihood for one particle at a given location
 
C++: mrpt::maps::CMultiMetricMapPDF::PF_SLAM_computeObservationLikelihoodForParticle(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &, size_t, const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) const --> double
PF_SLAM_implementation_custom_update_particle_with_new_pose(...)
PF_SLAM_implementation_custom_update_particle_with_new_pose(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF, particleData: mrpt.pymrpt.mrpt.maps.CRBPFParticleData, newPose: mrpt.pymrpt.mrpt.math.TPose3D) -> None
 
C++: mrpt::maps::CMultiMetricMapPDF::PF_SLAM_implementation_custom_update_particle_with_new_pose(class mrpt::maps::CRBPFParticleData *, const struct mrpt::math::TPose3D &) const --> void
PF_SLAM_implementation_doWeHaveValidObservations(...)
PF_SLAM_implementation_doWeHaveValidObservations(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF, particles: List[mrpt::bayes::CProbabilityParticle<mrpt::maps::CRBPFParticleData, (mrpt::bayes::particle_storage_mode)1>], sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> bool
 
C++: mrpt::maps::CMultiMetricMapPDF::PF_SLAM_implementation_doWeHaveValidObservations(const class std::deque<struct mrpt::bayes::CProbabilityParticle<class mrpt::maps::CRBPFParticleData, mrpt::bayes::particle_storage_mode::POINTER> > &, const class mrpt::obs::CSensoryFrame *) const --> bool
PF_SLAM_implementation_skipRobotMovement(...)
PF_SLAM_implementation_skipRobotMovement(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF) -> bool
 
C++: mrpt::maps::CMultiMetricMapPDF::PF_SLAM_implementation_skipRobotMovement() const --> bool
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF, opts: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions, mapsInitializers: mrpt.pymrpt.mrpt.maps.TSetOfMetricMapInitializers, predictionOptions: mrpt::maps::CMultiMetricMapPDF::TPredictionParams) -> None
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF, arg0: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF) -> None
 
4. __init__(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF, arg0: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF, : mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF) -> mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF
 
C++: mrpt::maps::CMultiMetricMapPDF::operator=(const class mrpt::maps::CMultiMetricMapPDF &) --> class mrpt::maps::CMultiMetricMapPDF &
clear(...)
clear(*args, **kwargs)
Overloaded function.
 
1. clear(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF, initialPose: mrpt.pymrpt.mrpt.poses.CPose2D) -> None
 
Clear all elements of the maps, and restore all paths to a single
 starting pose 
 
C++: mrpt::maps::CMultiMetricMapPDF::clear(const class mrpt::poses::CPose2D &) --> void
 
2. clear(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF, initialPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
C++: mrpt::maps::CMultiMetricMapPDF::clear(const class mrpt::poses::CPose3D &) --> void
 
3. clear(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF, prevMap: mrpt.pymrpt.mrpt.maps.CSimpleMap, currentPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
Resets the map by loading an already-mapped map for past poses.
 Current robot pose should be normally set to the last keyframe
 in the simplemap. 
 
C++: mrpt::maps::CMultiMetricMapPDF::clear(const class mrpt::maps::CSimpleMap &, const class mrpt::poses::CPose3D &) --> void
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CMultiMetricMapPDF::clone() const --> class mrpt::rtti::CObject *
getAveragedMetricMapEstimation(...)
getAveragedMetricMapEstimation(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF) -> mrpt.pymrpt.mrpt.maps.CMultiMetricMap
 
Returns the weighted averaged map based on the current best estimation.
 If you need a persistent copy of this object, please use
 "CSerializable::duplicate" and use the copy.
 
 
 Almost 100% sure you would prefer the best current map, given by
 getCurrentMostLikelyMetricMap()
 
C++: mrpt::maps::CMultiMetricMapPDF::getAveragedMetricMapEstimation() --> const class mrpt::maps::CMultiMetricMap *
getCurrentEntropyOfPaths(...)
getCurrentEntropyOfPaths(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF) -> float
 
Returns the current entropy of paths, computed as the average entropy of
 poses along the path, where entropy of each pose estimation is computed
 as the entropy of the gaussian approximation covariance.
 
C++: mrpt::maps::CMultiMetricMapPDF::getCurrentEntropyOfPaths() --> double
getCurrentJointEntropy(...)
getCurrentJointEntropy(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF) -> float
 
Returns the joint entropy estimation over paths and maps, acording to
 "Information Gain-based Exploration Using" by C. Stachniss, G. Grissetti
 and W.Burgard.
 
C++: mrpt::maps::CMultiMetricMapPDF::getCurrentJointEntropy() --> double
getCurrentMostLikelyMetricMap(...)
getCurrentMostLikelyMetricMap(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF) -> mrpt.pymrpt.mrpt.maps.CMultiMetricMap
 
Returns a pointer to the current most likely map (associated to the most
 likely particle) 
 
C++: mrpt::maps::CMultiMetricMapPDF::getCurrentMostLikelyMetricMap() const --> const class mrpt::maps::CMultiMetricMap *
getEstimatedPosePDF(...)
getEstimatedPosePDF(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF, out_estimation: mrpt.pymrpt.mrpt.poses.CPose3DPDFParticles) -> None
 
Returns the current estimate of the robot pose, as a particles PDF.
 
 
 getEstimatedPosePDFAtTime
 
C++: mrpt::maps::CMultiMetricMapPDF::getEstimatedPosePDF(class mrpt::poses::CPose3DPDFParticles &) const --> void
getEstimatedPosePDFAtTime(...)
getEstimatedPosePDFAtTime(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF, timeStep: int, out_estimation: mrpt.pymrpt.mrpt.poses.CPose3DPDFParticles) -> None
 
Returns the estimate of the robot pose as a particles PDF for the
 instant of time "timeStep", from 0 to N-1.
 
 
 getEstimatedPosePDF
 
C++: mrpt::maps::CMultiMetricMapPDF::getEstimatedPosePDFAtTime(size_t, class mrpt::poses::CPose3DPDFParticles &) const --> void
getLastPose(...)
getLastPose(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF, i: int, pose_is_valid: bool) -> mrpt.pymrpt.mrpt.math.TPose3D
 
                @{ 
 
C++: mrpt::maps::CMultiMetricMapPDF::getLastPose(size_t, bool &) const --> struct mrpt::math::TPose3D
getNumberOfObservationsInSimplemap(...)
getNumberOfObservationsInSimplemap(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF) -> int
 
Get the number of CSensoryFrame inserted into the internal member SFs 
 
C++: mrpt::maps::CMultiMetricMapPDF::getNumberOfObservationsInSimplemap() const --> size_t
getPath(...)
getPath(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF, i: int, out_path: List[mrpt.pymrpt.mrpt.math.TPose3D]) -> None
 
Return the path (in absolute coordinate poses) for the i'th particle.
 
 
 On index out of bounds
 
C++: mrpt::maps::CMultiMetricMapPDF::getPath(size_t, class std::deque<struct mrpt::math::TPose3D> &) const --> void
insertObservation(...)
insertObservation(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF, sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> bool
 
Insert an observation to the map, at each particle's pose and to each
 particle's metric map.
 
 
 The SF to be inserted
 
 
 true if any may was updated, false otherwise
 
C++: mrpt::maps::CMultiMetricMapPDF::insertObservation(class mrpt::obs::CSensoryFrame &) --> bool
saveCurrentPathEstimationToTextFile(...)
saveCurrentPathEstimationToTextFile(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF, fil: str) -> None
 
A logging utility: saves the current path estimation for each particle
 in a text file (a row per particle, each 3-column-entry is a set
 [x,y,phi], respectively).
 
C++: mrpt::maps::CMultiMetricMapPDF::saveCurrentPathEstimationToTextFile(const std::string &) --> void
updateSensoryFrameSequence(...)
updateSensoryFrameSequence(self: mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF) -> None
 
Update the poses estimation of the member "SFs" according to the current
 path belief.
 
C++: mrpt::maps::CMultiMetricMapPDF::updateSensoryFrameSequence() --> void

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CMultiMetricMapPDF::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CMultiMetricMapPDF::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
options

Data and other attributes defined here:
TPredictionParams = <class 'mrpt.pymrpt.mrpt.maps.CMultiMetricMapPDF.TPredictionParams'>
The struct for passing extra simulation parameters to the
prediction/update stage
   when running a particle filter.
 
 
prediction_and_update

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t:
clearParticles(...)
clearParticles(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t) -> None
 
C++: mrpt::bayes::CParticleFilterData<mrpt::maps::CRBPFParticleData, mrpt::bayes::particle_storage_mode::POINTER>::clearParticles() --> void

Data descriptors inherited from mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t:
m_particles

Methods inherited from mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t:
ESS(...)
ESS(*args, **kwargs)
Overloaded function.
 
1. ESS(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t) -> float
 
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::maps::CMultiMetricMapPDF, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::maps::CRBPFParticleData, mrpt::bayes::particle_storage_mode::POINTER>>>::ESS() const --> double
 
2. ESS(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t) -> float
 
Returns the normalized ESS (Estimated Sample Size), in the range [0,1].
  Note that you do NOT need to normalize the weights before calling this.
 
C++: mrpt::bayes::CParticleFilterCapable::ESS() const --> double
derived(...)
derived(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t) -> mrpt::maps::CMultiMetricMapPDF
 
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::maps::CMultiMetricMapPDF, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::maps::CRBPFParticleData, mrpt::bayes::particle_storage_mode::POINTER>>>::derived() --> class mrpt::maps::CMultiMetricMapPDF &
fastDrawSample(...)
fastDrawSample(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> int
 
Draws a random sample from the particle filter, in such a way that each
particle has a probability proportional to its weight (in the standard PF
algorithm).
   This method can be used to generate a variable number of m_particles
when resampling: to vary the number of m_particles in the filter.
   See prepareFastDrawSample for more information, or the 
*href="http://www.mrpt.org/Particle_Filters" >Particle Filter
tutorial.
 
 NOTES:
                - You MUST call "prepareFastDrawSample" ONCE before calling this
method. That method must be called after modifying the particle filter
(executing one step, resampling, etc...)
                - This method returns ONE index for the selected ("drawn") particle,
in
the range [0,M-1]
                - You do not need to call "normalizeWeights" before calling this.
 
 
 prepareFastDrawSample
 
C++: mrpt::bayes::CParticleFilterCapable::fastDrawSample(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &) const --> size_t
getW(...)
getW(*args, **kwargs)
Overloaded function.
 
1. getW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, i: int) -> float
 
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::maps::CMultiMetricMapPDF, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::maps::CRBPFParticleData, mrpt::bayes::particle_storage_mode::POINTER>>>::getW(size_t) const --> double
 
2. getW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, i: int) -> float
 
Access to i'th particle (logarithm) weight, where first one is index 0.
 
C++: mrpt::bayes::CParticleFilterCapable::getW(size_t) const --> double
normalizeWeights(...)
normalizeWeights(*args, **kwargs)
Overloaded function.
 
1. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t) -> float
 
2. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, out_max_log_w: float) -> float
 
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::maps::CMultiMetricMapPDF, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::maps::CRBPFParticleData, mrpt::bayes::particle_storage_mode::POINTER>>>::normalizeWeights(double *) --> double
 
3. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable) -> float
 
4. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, out_max_log_w: float) -> float
 
Normalize the (logarithmic) weights, such as the maximum weight is zero.
 
 
 If provided, will return with the maximum log_w
 before normalizing, such as new_weights = old_weights - max_log_w.
 
 
 The max/min ratio of weights ("dynamic range")
 
C++: mrpt::bayes::CParticleFilterCapable::normalizeWeights(double *) --> double
particlesCount(...)
particlesCount(*args, **kwargs)
Overloaded function.
 
1. particlesCount(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t) -> int
 
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::maps::CMultiMetricMapPDF, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::maps::CRBPFParticleData, mrpt::bayes::particle_storage_mode::POINTER>>>::particlesCount() const --> size_t
 
2. particlesCount(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t) -> int
 
Get the m_particles count.
 
C++: mrpt::bayes::CParticleFilterCapable::particlesCount() const --> size_t
performResampling(...)
performResampling(*args, **kwargs)
Overloaded function.
 
1. performResampling(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> None
 
2. performResampling(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions, out_particle_count: int) -> None
 
Performs a resample of the m_particles, using the method selected in the
 constructor.
 After computing the surviving samples, this method internally calls
 "performSubstitution" to actually perform the particle replacement.
 This method is called automatically by CParticleFilter::execute,
 andshould not be invoked manually normally.
 To just obtaining the sequence of resampled indexes from a sequence of
 weights, use "resample"
 
 
 The desired number of output particles
 after resampling; 0 means don't modify the current number.
 
 
 resample
 
C++: mrpt::bayes::CParticleFilterCapable::performResampling(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &, size_t) --> void
prediction_and_update(...)
prediction_and_update(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, action: mrpt.pymrpt.mrpt.obs.CActionCollection, observation: mrpt.pymrpt.mrpt.obs.CSensoryFrame, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> None
 
Performs the prediction stage of the Particle Filter.
  This method simply selects the appropiate protected method according to
 the particle filter algorithm to run.
 
 
 
 prediction_and_update_pfStandardProposal,prediction_and_update_pfAuxiliaryPFStandard,prediction_and_update_pfOptimalProposal,prediction_and_update_pfAuxiliaryPFOptimal
 
C++: mrpt::bayes::CParticleFilterCapable::prediction_and_update(const class mrpt::obs::CActionCollection *, const class mrpt::obs::CSensoryFrame *, const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &) --> void
setW(...)
setW(*args, **kwargs)
Overloaded function.
 
1. setW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, i: int, w: float) -> None
 
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::maps::CMultiMetricMapPDF, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::maps::CRBPFParticleData, mrpt::bayes::particle_storage_mode::POINTER>>>::setW(size_t, double) --> void
 
2. setW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, i: int, w: float) -> None
 
Modifies i'th particle (logarithm) weight, where first one is index 0.
 
C++: mrpt::bayes::CParticleFilterCapable::setW(size_t, double) --> void

Static methods inherited from mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t:
defaultEvaluator(...) from builtins.PyCapsule
defaultEvaluator(PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions, obj: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, index: int, action: capsule, observation: capsule) -> float
 
The default evaluator function, which simply returns the particle
 weight.
  The action and the observation are declared as "void*" for a greater
 flexibility.
 
 
 prepareFastDrawSample
 
C++: mrpt::bayes::CParticleFilterCapable::defaultEvaluator(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &, const class mrpt::bayes::CParticleFilterCapable *, size_t, const void *, const void *) --> double

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class COccupancyGridMap2D(CMetricMap, CLogOddsGridMap2D_signed_char_t)
    A class for storing an occupancy grid map.
  COccupancyGridMap2D is a class for storing a metric map
   representation in the form of a probabilistic occupancy
   grid map: value of 0 means certainly occupied, 1 means
   a certainly empty cell. Initially 0.5 means uncertainty.
 
 The cells keep the log-odd representation of probabilities instead of the
probabilities themselves.
  More details can be found at https://www.mrpt.org/Occupancy_Grids
 
 The algorithm for updating the grid from a laser scanner can optionally take
into account the progressive widening of the beams, as
   described in [this page](http://www.mrpt.org/Occupancy_Grids)
 
   Some implemented methods are:
                - Update of individual cells
                - Insertion of observations
                - Voronoi diagram and critical points (
                - Saving and loading from/to a bitmap
                - Laser scans simulation for the map contents
                - Entropy and information methods (See computeEntropy)
 
 
Method resolution order:
COccupancyGridMap2D
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
CLogOddsGridMap2D_signed_char_t
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::COccupancyGridMap2D::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> None
 
doc
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, arg0: float) -> None
 
doc
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, arg0: float, arg1: float) -> None
 
doc
 
4. __init__(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, arg0: float, arg1: float, arg2: float) -> None
 
doc
 
5. __init__(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, arg0: float, arg1: float, arg2: float, arg3: float) -> None
 
doc
 
6. __init__(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, min_x: float, max_x: float, min_y: float, max_y: float, resolution: float) -> None
 
7. __init__(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> None
 
8. __init__(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> None
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> str
 
Returns a short description of the map. 
 
C++: mrpt::maps::COccupancyGridMap2D::asString() const --> std::string
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, : mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D
 
C++: mrpt::maps::COccupancyGridMap2D::operator=(const class mrpt::maps::COccupancyGridMap2D &) --> class mrpt::maps::COccupancyGridMap2D &
buildVoronoiDiagram(...)
buildVoronoiDiagram(*args, **kwargs)
Overloaded function.
 
1. buildVoronoiDiagram(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, threshold: float, robot_size: float) -> None
 
2. buildVoronoiDiagram(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, threshold: float, robot_size: float, x1: int) -> None
 
3. buildVoronoiDiagram(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, threshold: float, robot_size: float, x1: int, x2: int) -> None
 
4. buildVoronoiDiagram(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, threshold: float, robot_size: float, x1: int, x2: int, y1: int) -> None
 
5. buildVoronoiDiagram(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, threshold: float, robot_size: float, x1: int, x2: int, y1: int, y2: int) -> None
 
Build the Voronoi diagram of the grid map.
 
 
 The threshold for binarizing the map.
 
 
 Size in "units" (meters) of robot, approx.
 
 
 Left coordinate of area to be computed. Default, entire map.
 
 
 Right coordinate of area to be computed. Default, entire map.
 
 
 Top coordinate of area to be computed. Default, entire map.
 
 
 Bottom coordinate of area to be computed. Default, entire map.
 
 
 findCriticalPoints
 
C++: mrpt::maps::COccupancyGridMap2D::buildVoronoiDiagram(float, float, int, int, int, int) --> void
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::COccupancyGridMap2D::clone() const --> class mrpt::rtti::CObject *
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
See docs in base class: in this class this always returns 0 
 
C++: mrpt::maps::COccupancyGridMap2D::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
computeClearance(...)
computeClearance(*args, **kwargs)
Overloaded function.
 
1. computeClearance(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, cx: int, cy: int, basis_x: int, basis_y: int, nBasis: int) -> int
 
2. computeClearance(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, cx: int, cy: int, basis_x: int, basis_y: int, nBasis: int, GetContourPoint: bool) -> int
 
Compute the clearance of a given cell, and returns its two first
   basis (closest obstacle) points.Used to build Voronoi and critical
 points.
 
 
 The clearance of the cell, in 1/100 of "cell".
 
 
 The cell index
 
 
 The cell index
 
 
 Target buffer for coordinates of basis, having a size of
 two "ints".
 
 
 Target buffer for coordinates of basis, having a size of
 two "ints".
 
 
 The number of found basis: Can be 0,1 or 2.
 
 
 If "true" the basis are not returned, but the
 closest free cells.Default at false.
 
 
 Build_VoronoiDiagram
 
C++: mrpt::maps::COccupancyGridMap2D::computeClearance(int, int, int *, int *, int *, bool) const --> int
 
3. computeClearance(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x: float, y: float, maxSearchDistance: float) -> float
 
An alternative method for computing the clearance of a given location
 (in meters).
  
 
 The clearance (distance to closest OCCUPIED cell), in meters.
 
C++: mrpt::maps::COccupancyGridMap2D::computeClearance(float, float, float) const --> float
computeEntropy(...)
computeEntropy(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, info: mrpt::maps::COccupancyGridMap2D::TEntropyInfo) -> None
 
Computes the entropy and related values of this grid map.
  The entropy is computed as the summed entropy of each cell, taking them
 as discrete random variables following a Bernoulli distribution:
 
 
 The output information is returned here 
 
C++: mrpt::maps::COccupancyGridMap2D::computeEntropy(struct mrpt::maps::COccupancyGridMap2D::TEntropyInfo &) const --> void
computeLikelihoodField_II(...)
computeLikelihoodField_II(*args, **kwargs)
Overloaded function.
 
1. computeLikelihoodField_II(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, pm: mrpt.pymrpt.mrpt.maps.CPointsMap) -> float
 
2. computeLikelihoodField_II(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, pm: mrpt.pymrpt.mrpt.maps.CPointsMap, relativePose: mrpt.pymrpt.mrpt.poses.CPose2D) -> float
 
Computes the likelihood [0,1] of a set of points, given the current grid
 map as reference.
 
 
 The points map
 
 
 The relative pose of the points map in this map's
 coordinates, or nullptr for (0,0,0).
  See "likelihoodOptions" for configuration parameters.
 
C++: mrpt::maps::COccupancyGridMap2D::computeLikelihoodField_II(const class mrpt::maps::CPointsMap *, const class mrpt::poses::CPose2D *) const --> double
computeLikelihoodField_Thrun(...)
computeLikelihoodField_Thrun(*args, **kwargs)
Overloaded function.
 
1. computeLikelihoodField_Thrun(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, pm: mrpt.pymrpt.mrpt.maps.CPointsMap) -> float
 
2. computeLikelihoodField_Thrun(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, pm: mrpt.pymrpt.mrpt.maps.CPointsMap, relativePose: mrpt.pymrpt.mrpt.poses.CPose2D) -> float
 
Computes the likelihood [0,1] of a set of points, given the current grid
 map as reference.
 
 
 The points map
 
 
 The relative pose of the points map in this map's
 coordinates, or nullptr for (0,0,0).
  See "likelihoodOptions" for configuration parameters.
 
C++: mrpt::maps::COccupancyGridMap2D::computeLikelihoodField_Thrun(const class mrpt::maps::CPointsMap *, const class mrpt::poses::CPose2D *) const --> double
computePathCost(...)
computePathCost(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x1: float, y1: float, x2: float, y2: float) -> float
 
Compute the 'cost' of traversing a segment of the map according to the
 occupancy of traversed cells.
  
 
 This returns '1-mean(traversed cells occupancy)', i.e. 0.5 for
 unknown cells, 1 for a free path.
 
C++: mrpt::maps::COccupancyGridMap2D::computePathCost(float, float, float, float) const --> float
copyMapContentFrom(...)
copyMapContentFrom(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, otherMap: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> None
 
copy the gridmap contents, but not all the options, from another map
 instance 
 
C++: mrpt::maps::COccupancyGridMap2D::copyMapContentFrom(const class mrpt::maps::COccupancyGridMap2D &) --> void
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
See the base class for more details: In this class it is implemented as
 correspondences of the passed points map to occupied cells.
 NOTICE: That the "z" dimension is ignored in the points. Clip the points
 as appropiated if needed before calling this method.
 
 
 computeMatching3DWith
 
C++: mrpt::maps::COccupancyGridMap2D::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
fill(...)
fill(*args, **kwargs)
Overloaded function.
 
1. fill(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> None
 
2. fill(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, default_value: float) -> None
 
Fills all the cells with a default value. 
 
C++: mrpt::maps::COccupancyGridMap2D::fill(float) --> void
findCriticalPoints(...)
findCriticalPoints(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, filter_distance: float) -> None
 
Builds a list with the critical points from Voronoi diagram, which must
    must be built before calling this method.
 
 
 The minimum distance between two critical points.
 
 
 buildVoronoiDiagram
 
C++: mrpt::maps::COccupancyGridMap2D::findCriticalPoints(float) --> void
getArea(...)
getArea(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> float
 
Returns the area of the gridmap, in square meters 
 
C++: mrpt::maps::COccupancyGridMap2D::getArea() const --> double
getAsImage(...)
getAsImage(*args, **kwargs)
Overloaded function.
 
1. getAsImage(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, img: mrpt.pymrpt.mrpt.img.CImage) -> None
 
2. getAsImage(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, img: mrpt.pymrpt.mrpt.img.CImage, verticalFlip: bool) -> None
 
3. getAsImage(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, img: mrpt.pymrpt.mrpt.img.CImage, verticalFlip: bool, forceRGB: bool) -> None
 
4. getAsImage(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, img: mrpt.pymrpt.mrpt.img.CImage, verticalFlip: bool, forceRGB: bool, tricolor: bool) -> None
 
Returns the grid as a 8-bit graylevel image, where each pixel is a cell
 (output image is RGB only if forceRGB is true)
  If "tricolor" is true, only three gray levels will appear in the image:
 gray for unobserved cells, and black/white for occupied/empty cells
 respectively.
 
 
 getAsImageFiltered
 
C++: mrpt::maps::COccupancyGridMap2D::getAsImage(class mrpt::img::CImage &, bool, bool, bool) const --> void
getAsImageFiltered(...)
getAsImageFiltered(*args, **kwargs)
Overloaded function.
 
1. getAsImageFiltered(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, img: mrpt.pymrpt.mrpt.img.CImage) -> None
 
2. getAsImageFiltered(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, img: mrpt.pymrpt.mrpt.img.CImage, verticalFlip: bool) -> None
 
3. getAsImageFiltered(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, img: mrpt.pymrpt.mrpt.img.CImage, verticalFlip: bool, forceRGB: bool) -> None
 
Returns the grid as a 8-bit graylevel image, where each pixel is a cell
 (output image is RGB only if forceRGB is true) - This method filters the
 image for easy feature detection
  If "tricolor" is true, only three gray levels will appear in the image:
 gray for unobserved cells, and black/white for occupied/empty cells
 respectively.
 
 
 getAsImage
 
C++: mrpt::maps::COccupancyGridMap2D::getAsImageFiltered(class mrpt::img::CImage &, bool, bool) const --> void
getAsPointCloud(...)
getAsPointCloud(*args, **kwargs)
Overloaded function.
 
1. getAsPointCloud(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, pm: mrpt::maps::CSimplePointsMap) -> None
 
2. getAsPointCloud(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, pm: mrpt::maps::CSimplePointsMap, occup_threshold: float) -> None
 
Get a point cloud with all (border) occupied cells as points 
 
C++: mrpt::maps::COccupancyGridMap2D::getAsPointCloud(class mrpt::maps::CSimplePointsMap &, const float) const --> void
getBasisCell(...)
getBasisCell(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x: int, y: int) -> int
 
Reads a cell in the "basis" maps.Used for Voronoi calculation 
 
C++: mrpt::maps::COccupancyGridMap2D::getBasisCell(int, int) const --> unsigned char
getBasisMap(...)
getBasisMap(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> mrpt.pymrpt.mrpt.containers.CDynamicGrid_unsigned_char_t
 
Return the auxiliary "basis" map built while building the Voronoi
 diagram 
 
 buildVoronoiDiagram 
 
C++: mrpt::maps::COccupancyGridMap2D::getBasisMap() const --> const class mrpt::containers::CDynamicGrid<unsigned char> &
getCell(...)
getCell(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x: int, y: int) -> float
 
Read the real valued [0,1] contents of a cell, given its index 
 
C++: mrpt::maps::COccupancyGridMap2D::getCell(int, int) const --> float
getPos(...)
getPos(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x: float, y: float) -> float
 
Read the real valued [0,1] contents of a cell, given its coordinates 
 
C++: mrpt::maps::COccupancyGridMap2D::getPos(float, float) const --> float
getResolution(...)
getResolution(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> float
 
Returns the resolution of the grid map 
 
C++: mrpt::maps::COccupancyGridMap2D::getResolution() const --> float
getRow(...)
getRow(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, cy: int) -> int
 
Access to a "row": mainly used for drawing grid as a bitmap efficiently,
 do not use it normally 
 
C++: mrpt::maps::COccupancyGridMap2D::getRow(int) --> signed char *
getSizeX(...)
getSizeX(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> int
 
Returns the horizontal size of grid map in cells count 
 
C++: mrpt::maps::COccupancyGridMap2D::getSizeX() const --> unsigned int
getSizeY(...)
getSizeY(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> int
 
Returns the vertical size of grid map in cells count 
 
C++: mrpt::maps::COccupancyGridMap2D::getSizeY() const --> unsigned int
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, outObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
Returns a 3D plane with its texture being the occupancy grid and
 transparency proportional to "uncertainty" (i.e. a value of 0.5 is fully
 transparent)
 
C++: mrpt::maps::COccupancyGridMap2D::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
getVoroniClearance(...)
getVoroniClearance(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, cx: int, cy: int) -> int
 
Reads a the clearance of a cell (in centimeters), after building the
 Voronoi diagram with  
 
C++: mrpt::maps::COccupancyGridMap2D::getVoroniClearance(int, int) const --> uint16_t
getVoronoiDiagram(...)
getVoronoiDiagram(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> mrpt.pymrpt.mrpt.containers.CDynamicGrid_unsigned_short_t
 
Return the Voronoi diagram; each cell contains the distance to its
 closer obstacle, or 0 if not part of the Voronoi diagram 
 
 
 buildVoronoiDiagram 
 
C++: mrpt::maps::COccupancyGridMap2D::getVoronoiDiagram() const --> const class mrpt::containers::CDynamicGrid<unsigned short> &
getXMax(...)
getXMax(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> float
 
Returns the "x" coordinate of right side of grid map 
 
C++: mrpt::maps::COccupancyGridMap2D::getXMax() const --> float
getXMin(...)
getXMin(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> float
 
Returns the "x" coordinate of left side of grid map 
 
C++: mrpt::maps::COccupancyGridMap2D::getXMin() const --> float
getYMax(...)
getYMax(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> float
 
Returns the "y" coordinate of bottom side of grid map 
 
C++: mrpt::maps::COccupancyGridMap2D::getYMax() const --> float
getYMin(...)
getYMin(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> float
 
Returns the "y" coordinate of top side of grid map 
 
C++: mrpt::maps::COccupancyGridMap2D::getYMin() const --> float
idx2x(...)
idx2x(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, cx: int) -> float
 
Transform a cell index into a coordinate value 
 
C++: mrpt::maps::COccupancyGridMap2D::idx2x(size_t) const --> float
idx2y(...)
idx2y(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, cy: int) -> float
 
C++: mrpt::maps::COccupancyGridMap2D::idx2y(size_t) const --> float
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D) -> bool
 
Returns true upon map construction or after calling clear(), the return
  changes to false upon successful insertObservation() or any other
 method to load data in the map.
 
C++: mrpt::maps::COccupancyGridMap2D::isEmpty() const --> bool
isStaticCell(...)
isStaticCell(*args, **kwargs)
Overloaded function.
 
1. isStaticCell(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, cx: int, cy: int) -> bool
 
2. isStaticCell(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, cx: int, cy: int, threshold: float) -> bool
 
C++: mrpt::maps::COccupancyGridMap2D::isStaticCell(int, int, float) const --> bool
isStaticPos(...)
isStaticPos(*args, **kwargs)
Overloaded function.
 
1. isStaticPos(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x: float, y: float) -> bool
 
2. isStaticPos(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x: float, y: float, threshold: float) -> bool
 
Returns "true" if cell is "static", i.e.if its occupancy is below a
 given threshold 
 
C++: mrpt::maps::COccupancyGridMap2D::isStaticPos(float, float, float) const --> bool
laserScanSimulator(...)
laserScanSimulator(*args, **kwargs)
Overloaded function.
 
1. laserScanSimulator(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, inout_Scan: mrpt.pymrpt.mrpt.obs.CObservation2DRangeScan, robotPose: mrpt.pymrpt.mrpt.poses.CPose2D) -> None
 
2. laserScanSimulator(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, inout_Scan: mrpt.pymrpt.mrpt.obs.CObservation2DRangeScan, robotPose: mrpt.pymrpt.mrpt.poses.CPose2D, threshold: float) -> None
 
3. laserScanSimulator(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, inout_Scan: mrpt.pymrpt.mrpt.obs.CObservation2DRangeScan, robotPose: mrpt.pymrpt.mrpt.poses.CPose2D, threshold: float, N: int) -> None
 
4. laserScanSimulator(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, inout_Scan: mrpt.pymrpt.mrpt.obs.CObservation2DRangeScan, robotPose: mrpt.pymrpt.mrpt.poses.CPose2D, threshold: float, N: int, noiseStd: float) -> None
 
5. laserScanSimulator(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, inout_Scan: mrpt.pymrpt.mrpt.obs.CObservation2DRangeScan, robotPose: mrpt.pymrpt.mrpt.poses.CPose2D, threshold: float, N: int, noiseStd: float, decimation: int) -> None
 
6. laserScanSimulator(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, inout_Scan: mrpt.pymrpt.mrpt.obs.CObservation2DRangeScan, robotPose: mrpt.pymrpt.mrpt.poses.CPose2D, threshold: float, N: int, noiseStd: float, decimation: int, angleNoiseStd: float) -> None
 
Simulates a laser range scan into the current grid map.
   The simulated scan is stored in a CObservation2DRangeScan object, which
is also used
    to pass some parameters: all previously stored characteristics (as
aperture,...) are
          taken into account for simulation. Only a few more parameters are
needed. Additive gaussian noise can be optionally added to the simulated
scan.
 
 
 [IN/OUT] This must be filled with desired parameters
before calling, and will contain the scan samples on return.
 
 
 [IN] The robot pose in this map coordinates. Recall that
sensor pose relative to this robot pose must be specified in the
observation object.
 
 
 [IN] The minimum occupancy threshold to consider a cell
to be occupied (Default: 0.5f)
 
 
 [IN] The count of range scan "rays", by default to 361.
 
 
 [IN] The standard deviation of measurement noise. If not
desired, set to 0.
 
 
 [IN] The rays that will be simulated are at indexes: 0,
D, 2D, 3D, ... Default is D=1
 
 
 [IN] The sigma of an optional Gaussian noise added
to the angles at which ranges are measured (in radians).
 
 
 laserScanSimulatorWithUncertainty(), sonarSimulator(),
COccupancyGridMap2D::RAYTRACE_STEP_SIZE_IN_CELL_UNITS
 
C++: mrpt::maps::COccupancyGridMap2D::laserScanSimulator(class mrpt::obs::CObservation2DRangeScan &, const class mrpt::poses::CPose2D &, float, size_t, float, unsigned int, float) const --> void
laserScanSimulatorWithUncertainty(...)
laserScanSimulatorWithUncertainty(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, in_params: mrpt::maps::COccupancyGridMap2D::TLaserSimulUncertaintyParams, out_results: mrpt::maps::COccupancyGridMap2D::TLaserSimulUncertaintyResult) -> None
 
Like laserScanSimulatorWithUncertainty() (see it for a discussion of
 most parameters) but taking into account
  the robot pose uncertainty and generating a vector of predicted
 variances for each ray.
  Range uncertainty includes both, sensor noise and large non-linear
 effects caused by borders and discontinuities in the environment
  as seen from different robot poses.
 
 
 [IN] Input settings. See TLaserSimulUncertaintyParams
 
 
 [OUT] Output range + uncertainty.
 
 
 laserScanSimulator(),
 COccupancyGridMap2D::RAYTRACE_STEP_SIZE_IN_CELL_UNITS
 
C++: mrpt::maps::COccupancyGridMap2D::laserScanSimulatorWithUncertainty(const struct mrpt::maps::COccupancyGridMap2D::TLaserSimulUncertaintyParams &, struct mrpt::maps::COccupancyGridMap2D::TLaserSimulUncertaintyResult &) const --> void
loadFromBitmap(...)
loadFromBitmap(*args, **kwargs)
Overloaded function.
 
1. loadFromBitmap(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, img: mrpt.pymrpt.mrpt.img.CImage, resolution: float) -> bool
 
2. loadFromBitmap(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, img: mrpt.pymrpt.mrpt.img.CImage, resolution: float, origin: mrpt::math::TPoint2D_<double>) -> bool
 
Load the gridmap from a image in a file (the format can be any supported
 by CImage::loadFromFile).
  See loadFromBitmapFile() for the meaning of parameters 
 
C++: mrpt::maps::COccupancyGridMap2D::loadFromBitmap(const class mrpt::img::CImage &, float, const struct mrpt::math::TPoint2D_<double> &) --> bool
loadFromBitmapFile(...)
loadFromBitmapFile(*args, **kwargs)
Overloaded function.
 
1. loadFromBitmapFile(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, file: str, resolution: float) -> bool
 
2. loadFromBitmapFile(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, file: str, resolution: float, origin: mrpt::math::TPoint2D_<double>) -> bool
 
Load the gridmap from a image in a file (the format can be any supported
 by CImage::loadFromFile).
 
 
 The file to be loaded.
 
 
 The size of a pixel (cell), in meters. Recall cells are
 always squared, so just a dimension is needed.
 
 
 The `x` (0=first, increases left to right on the
 image) and `y` (0=first, increases BOTTOM upwards on the image)
 coordinates for the pixel which will be taken at the origin of map
 coordinates (0,0). (Default=center of the image) 
 
 False on any
 error. 
 
 loadFromBitmap
 
C++: mrpt::maps::COccupancyGridMap2D::loadFromBitmapFile(const std::string &, float, const struct mrpt::math::TPoint2D_<double> &) --> bool
loadFromROSMapServerYAML(...)
loadFromROSMapServerYAML(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, yamlFilePath: str) -> bool
 
Loads this gridmap from a .yaml file and an accompanying image file
  given in the
  [map_server YAML](http://wiki.ros.org/map_server#YAML_format) file
  format.
 
 
 Absolute or relative path to the `.yaml` file.
 
 
 false on error, true on success.
 
 
 FromROSMapServerYAML()
 
C++: mrpt::maps::COccupancyGridMap2D::loadFromROSMapServerYAML(const std::string &) --> bool
resizeGrid(...)
resizeGrid(*args, **kwargs)
Overloaded function.
 
1. resizeGrid(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, new_x_min: float, new_x_max: float, new_y_min: float, new_y_max: float) -> None
 
2. resizeGrid(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, new_x_min: float, new_x_max: float, new_y_min: float, new_y_max: float, new_cells_default_value: float) -> None
 
3. resizeGrid(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, new_x_min: float, new_x_max: float, new_y_min: float, new_y_max: float, new_cells_default_value: float, additionalMargin: bool) -> None
 
Change the size of gridmap, maintaining previous contents.
 
 
 The "x" coordinates of new left most side of grid.
 
 
 The "x" coordinates of new right most side of grid.
 
 
 The "y" coordinates of new top most side of grid.
 
 
 The "y" coordinates of new bottom most side of grid.
 
 
 The value of the new cells, tipically 0.5.
 
 
 If set to true (default), an additional margin of
 a few meters will be added to the grid, ONLY if the new coordinates are
 larger than current ones.
 
 
 setSize
 
C++: mrpt::maps::COccupancyGridMap2D::resizeGrid(float, float, float, float, float, bool) --> void
saveAsBitmapFile(...)
saveAsBitmapFile(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, file: str) -> bool
 
Saves the gridmap as a graphical file (BMP,PNG,...).
 The format will be derived from the file extension (see
 CImage::saveToFile )
 
 
 False on any error.
 
C++: mrpt::maps::COccupancyGridMap2D::saveAsBitmapFile(const std::string &) const --> bool
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, filNamePrefix: str) -> None
 
This virtual method saves the map to a file "filNamePrefix"+<
 some_file_extension >, as an image or in any other applicable way (Notice
 that other methods to save the map may be implemented in classes
 implementing this virtual interface).  
 
C++: mrpt::maps::COccupancyGridMap2D::saveMetricMapRepresentationToFile(const std::string &) const --> void
setBasisCell(...)
setBasisCell(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x: int, y: int, value: int) -> None
 
Change a cell in the "basis" maps.Used for Voronoi calculation 
 
C++: mrpt::maps::COccupancyGridMap2D::setBasisCell(int, int, uint8_t) --> void
setCell(...)
setCell(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x: int, y: int, value: float) -> None
 
Change the contents [0,1] of a cell, given its index 
 
C++: mrpt::maps::COccupancyGridMap2D::setCell(int, int, float) --> void
setPos(...)
setPos(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x: float, y: float, value: float) -> None
 
Change the contents [0,1] of a cell, given its coordinates 
 
C++: mrpt::maps::COccupancyGridMap2D::setPos(float, float, float) --> void
setSize(...)
setSize(*args, **kwargs)
Overloaded function.
 
1. setSize(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float) -> None
 
2. setSize(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float, default_value: float) -> None
 
Change the size of gridmap, erasing all its previous contents.
 
 
 The "x" coordinates of left most side of grid.
 
 
 The "x" coordinates of right most side of grid.
 
 
 The "y" coordinates of top most side of grid.
 
 
 The "y" coordinates of bottom most side of grid.
 
 
 The new size of cells.
 
 
 The value of cells, tipically 0.5.
 
 
 ResizeGrid
 
C++: mrpt::maps::COccupancyGridMap2D::setSize(float, float, float, float, float, float) --> void
simulateScanRay(...)
simulateScanRay(*args, **kwargs)
Overloaded function.
 
1. simulateScanRay(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x: float, y: float, angle_direction: float, out_range: float, out_valid: bool, max_range_meters: float) -> None
 
2. simulateScanRay(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x: float, y: float, angle_direction: float, out_range: float, out_valid: bool, max_range_meters: float, threshold_free: float) -> None
 
3. simulateScanRay(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x: float, y: float, angle_direction: float, out_range: float, out_valid: bool, max_range_meters: float, threshold_free: float, noiseStd: float) -> None
 
4. simulateScanRay(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x: float, y: float, angle_direction: float, out_range: float, out_valid: bool, max_range_meters: float, threshold_free: float, noiseStd: float, angleNoiseStd: float) -> None
 
Simulate just one "ray" in the grid map. This method is used internally
 to sonarSimulator and laserScanSimulator. 
 
 
 COccupancyGridMap2D::RAYTRACE_STEP_SIZE_IN_CELL_UNITS 
 
C++: mrpt::maps::COccupancyGridMap2D::simulateScanRay(const double, const double, const double, float &, bool &, const double, const float, const double, const double) const --> void
sonarSimulator(...)
sonarSimulator(*args, **kwargs)
Overloaded function.
 
1. sonarSimulator(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, inout_observation: mrpt.pymrpt.mrpt.obs.CObservationRange, robotPose: mrpt.pymrpt.mrpt.poses.CPose2D) -> None
 
2. sonarSimulator(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, inout_observation: mrpt.pymrpt.mrpt.obs.CObservationRange, robotPose: mrpt.pymrpt.mrpt.poses.CPose2D, threshold: float) -> None
 
3. sonarSimulator(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, inout_observation: mrpt.pymrpt.mrpt.obs.CObservationRange, robotPose: mrpt.pymrpt.mrpt.poses.CPose2D, threshold: float, rangeNoiseStd: float) -> None
 
4. sonarSimulator(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, inout_observation: mrpt.pymrpt.mrpt.obs.CObservationRange, robotPose: mrpt.pymrpt.mrpt.poses.CPose2D, threshold: float, rangeNoiseStd: float, angleNoiseStd: float) -> None
 
Simulates the observations of a sonar rig into the current grid map.
   The simulated ranges are stored in a CObservationRange object, which is
 also used
    to pass in some needed parameters, as the poses of the sonar sensors
 onto the mobile robot.
 
 
 [IN/OUT] This must be filled with desired
 parameters before calling, and will contain the simulated ranges on
 return.
 
 
 [IN] The robot pose in this map coordinates. Recall that
 sensor pose relative to this robot pose must be specified in the
 observation object.
 
 
 [IN] The minimum occupancy threshold to consider a cell
 to be occupied (Default: 0.5f)
 
 
 [IN] The standard deviation of measurement noise. If
 not desired, set to 0.
 
 
 [IN] The sigma of an optional Gaussian noise added
 to the angles at which ranges are measured (in radians).
 
 
 laserScanSimulator(),
 COccupancyGridMap2D::RAYTRACE_STEP_SIZE_IN_CELL_UNITS
 
C++: mrpt::maps::COccupancyGridMap2D::sonarSimulator(class mrpt::obs::CObservationRange &, const class mrpt::poses::CPose2D &, float, float, float) const --> void
subSample(...)
subSample(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, downRatio: int) -> None
 
Performs a downsampling of the gridmap, by a given factor:
 resolution/=ratio 
 
C++: mrpt::maps::COccupancyGridMap2D::subSample(int) --> void
updateCell(...)
updateCell(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x: int, y: int, v: float) -> None
 
Performs the Bayesian fusion of a new observation of a cell  
 
 updateInfoChangeOnly, updateCell_fast_occupied, updateCell_fast_free 
 
C++: mrpt::maps::COccupancyGridMap2D::updateCell(int, int, float) --> void
x2idx(...)
x2idx(*args, **kwargs)
Overloaded function.
 
1. x2idx(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x: float) -> int
 
Transform a coordinate value into a cell index 
 
C++: mrpt::maps::COccupancyGridMap2D::x2idx(float) const --> int
 
2. x2idx(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x: float) -> int
 
C++: mrpt::maps::COccupancyGridMap2D::x2idx(double) const --> int
 
3. x2idx(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, x: float, xmin: float) -> int
 
Transform a coordinate value into a cell index, using a diferent "x_min"
 value 
 
C++: mrpt::maps::COccupancyGridMap2D::x2idx(float, float) const --> int
y2idx(...)
y2idx(*args, **kwargs)
Overloaded function.
 
1. y2idx(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, y: float) -> int
 
C++: mrpt::maps::COccupancyGridMap2D::y2idx(float) const --> int
 
2. y2idx(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, y: float) -> int
 
C++: mrpt::maps::COccupancyGridMap2D::y2idx(double) const --> int
 
3. y2idx(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, y: float, ymin: float) -> int
 
C++: mrpt::maps::COccupancyGridMap2D::y2idx(float, float) const --> int

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::COccupancyGridMap2D::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
FromROSMapServerYAML(...) from builtins.PyCapsule
FromROSMapServerYAML(yamlFilePath: str) -> mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D
 
Creates a gridmap from a .yaml file and an accompanying image file
  given in the
  [map_server YAML](http://wiki.ros.org/map_server#YAML_format) file
  format.
 
 
 Absolute or relative path to the `.yaml` file.
 
 
 loadFromROSMapServerYAML()
 
 
 std::exception On error loading or parsing the files.
 
C++: mrpt::maps::COccupancyGridMap2D::FromROSMapServerYAML(const std::string &) --> class mrpt::maps::COccupancyGridMap2D
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::COccupancyGridMap2D::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &
l2p(...) from builtins.PyCapsule
l2p(l: int) -> float
 
Scales an integer representation of the log-odd into a real valued
 probability in [0,1], using p=exp(l)/(1+exp(l))  
 
C++: mrpt::maps::COccupancyGridMap2D::l2p(const signed char) --> float
l2p_255(...) from builtins.PyCapsule
l2p_255(l: int) -> int
 
Scales an integer representation of the log-odd into a linear scale
 [0,255], using p=exp(l)/(1+exp(l)) 
 
C++: mrpt::maps::COccupancyGridMap2D::l2p_255(const signed char) --> uint8_t
p2l(...) from builtins.PyCapsule
p2l(p: float) -> int
 
Scales a real valued probability in [0,1] to an integer representation
 of: log(p)-log(1-p)  in the valid range of cellType 
 
C++: mrpt::maps::COccupancyGridMap2D::p2l(const float) --> signed char
saveAsBitmapTwoMapsWithCorrespondences(...) from builtins.PyCapsule
saveAsBitmapTwoMapsWithCorrespondences(fileName: str, m1: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, m2: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, corrs: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t) -> bool
 
Saves a composite image with two gridmaps and lines representing a set
 of correspondences between them.
 
 
 saveAsEMFTwoMapsWithCorrespondences
 
 
 False on any error.
 
C++: mrpt::maps::COccupancyGridMap2D::saveAsBitmapTwoMapsWithCorrespondences(const std::string &, const class mrpt::maps::COccupancyGridMap2D *, const class mrpt::maps::COccupancyGridMap2D *, const class mrpt::tfest::TMatchingPairListTempl<float> &) --> bool
saveAsEMFTwoMapsWithCorrespondences(...) from builtins.PyCapsule
saveAsEMFTwoMapsWithCorrespondences(fileName: str, m1: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, m2: mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D, corrs: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t) -> bool
 
Saves a composite image with two gridmaps and numbers for the
 correspondences between them.
 
 
 saveAsBitmapTwoMapsWithCorrespondences
 
 
 False on any error.
 
C++: mrpt::maps::COccupancyGridMap2D::saveAsEMFTwoMapsWithCorrespondences(const std::string &, const class mrpt::maps::COccupancyGridMap2D *, const class mrpt::maps::COccupancyGridMap2D *, const class mrpt::tfest::TMatchingPairListTempl<float> &) --> bool

Data descriptors defined here:
CriticalPointsList
insertionOptions
likelihoodOptions
likelihoodOutputs
updateInfoChangeOnly

Data and other attributes defined here:
TCriticalPointsList = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D.TCriticalPointsList'>
The structure used to store the set of Voronoi diagram
   critical points.
 
 
findCriticalPoints
TEntropyInfo = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D.TEntropyInfo'>
Used for returning entropy related information 
computeEntropy
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D.TInsertionOptions'>
With this struct options are provided to the observation insertion
process.
 
 
CObservation::insertIntoGridMap
TLaserSimulUncertaintyMethod = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D.TLaserSimulUncertaintyMethod'>
TLaserSimulUncertaintyParams = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D.TLaserSimulUncertaintyParams'>
Input params for laserScanSimulatorWithUncertainty()
TLaserSimulUncertaintyResult = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D.TLaserSimulUncertaintyResult'>
Output params for laserScanSimulatorWithUncertainty()
TLikelihoodMethod = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D.TLikelihoodMethod'>
TLikelihoodOptions = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D.TLikelihoodOptions'>
With this struct options are provided to the observation likelihood
computation process
TLikelihoodOutput = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D.TLikelihoodOutput'>
Some members of this struct will contain intermediate or output data
after calling "computeObservationLikelihood" for some likelihood
functions
TMapDefinition = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D.TMapDefinition'>
TMapDefinitionBase = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D.TMapDefinitionBase'>
TUpdateCellsInfoChangeOnly = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap2D.TUpdateCellsInfoChangeOnly'>
An internal structure for storing data related to counting the new
information apported by some observation
lmCellsDifference = <TLikelihoodMethod.lmCellsDifference: 3>
lmConsensus = <TLikelihoodMethod.lmConsensus: 2>
lmConsensusOWA = <TLikelihoodMethod.lmConsensusOWA: 6>
lmLikelihoodField_II = <TLikelihoodMethod.lmLikelihoodField_II: 5>
lmLikelihoodField_Thrun = <TLikelihoodMethod.lmLikelihoodField_Thrun: 4>
lmMeanInformation = <TLikelihoodMethod.lmMeanInformation: 0>
lmRayTracing = <TLikelihoodMethod.lmRayTracing: 1>
sumMonteCarlo = <TLaserSimulUncertaintyMethod.sumMonteCarlo: 1>
sumUnscented = <TLaserSimulUncertaintyMethod.sumUnscented: 0>

Methods inherited from CMetricMap:
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
Erase all the contents of the map 
 
C++: mrpt::maps::CMetricMap::clear() --> void
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matchings between this and another 3D points map - method
used in 3D-ICP.
  This method finds the set of point pairs in each map.
 
  The method is the most time critical one into ICP-like algorithms.
 
  The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.CMetricMap, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map. 
 
C++: mrpt::maps::CMetricMap::squareDistanceToClosestCorrespondence(float, float) const --> float

Data descriptors inherited from CMetricMap:
genericMapParams

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Methods inherited from CLogOddsGridMap2D_signed_char_t:
updateCell_fast_occupied(...)
updateCell_fast_occupied(*args, **kwargs)
Overloaded function.
 
1. updateCell_fast_occupied(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap2D_signed_char_t, x: int, y: int, logodd_obs: int, thres: int, mapArray: int, _size_x: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap2D<signed char>::updateCell_fast_occupied(const unsigned int, const unsigned int, const signed char, const signed char, signed char *, const unsigned int) --> void
 
2. updateCell_fast_occupied(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap2D_signed_char_t, theCell: int, logodd_obs: int, thres: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap2D<signed char>::updateCell_fast_occupied(signed char *, const signed char, const signed char) --> void

Static methods inherited from CLogOddsGridMap2D_signed_char_t:
updateCell_fast_free(...) from builtins.PyCapsule
updateCell_fast_free(*args, **kwargs)
Overloaded function.
 
1. updateCell_fast_free(x: int, y: int, logodd_obs: int, thres: int, mapArray: int, _size_x: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap2D<signed char>::updateCell_fast_free(const unsigned int, const unsigned int, const signed char, const signed char, signed char *, const unsigned int) --> void
 
2. updateCell_fast_free(theCell: int, logodd_obs: int, thres: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap2D<signed char>::updateCell_fast_free(signed char *, const signed char, const signed char) --> void

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class COccupancyGridMap3D(CMetricMap, CLogOddsGridMap3D_signed_char_t)
    A 3D occupancy grid map with a regular, even distribution of voxels.
 
 This is a faster alternative to COctoMap, but use with caution with limited
map extensions, since it could easily exaust available memory.
 
 Each voxel follows a Bernoulli probability distribution: a value of 0 means
certainly occupied, 1 means a certainly empty voxel. Initially 0.5 means
uncertainty.
 
 
Method resolution order:
COccupancyGridMap3D
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
CLogOddsGridMap3D_signed_char_t
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::COccupancyGridMap3D::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D) -> None
 
doc
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, arg0: mrpt::math::TPoint3D_<double>) -> None
 
doc
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, arg0: mrpt::math::TPoint3D_<double>, arg1: mrpt::math::TPoint3D_<double>) -> None
 
doc
 
4. __init__(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, corner_min: mrpt::math::TPoint3D_<double>, corner_max: mrpt::math::TPoint3D_<double>, resolution: float) -> None
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D) -> str
 
Returns a short description of the map. 
 
C++: mrpt::maps::COccupancyGridMap3D::asString() const --> std::string
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, : mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D) -> mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D
 
C++: mrpt::maps::COccupancyGridMap3D::operator=(const class mrpt::maps::COccupancyGridMap3D &) --> class mrpt::maps::COccupancyGridMap3D &
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::COccupancyGridMap3D::clone() const --> class mrpt::rtti::CObject *
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
See docs in base class: in this class this always returns 0 
 
C++: mrpt::maps::COccupancyGridMap3D::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
See docs in base class: in this class this always returns 0 
 
C++: mrpt::maps::COccupancyGridMap3D::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
fill(...)
fill(*args, **kwargs)
Overloaded function.
 
1. fill(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D) -> None
 
2. fill(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, default_value: float) -> None
 
Fills all the voxels with a default value. 
 
C++: mrpt::maps::COccupancyGridMap3D::fill(float) --> void
getAsOctoMapVoxels(...)
getAsOctoMapVoxels(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, gl_obj: mrpt.pymrpt.mrpt.opengl.COctoMapVoxels) -> None
 
renderingOptions 
 
C++: mrpt::maps::COccupancyGridMap3D::getAsOctoMapVoxels(class mrpt::opengl::COctoMapVoxels &) const --> void
getCellFreeness(...)
getCellFreeness(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, cx: int, cy: int, cz: int) -> float
 
Read the real valued [0,1] (0:occupied, 1:free) contents of a voxel,
 given its index 
 
C++: mrpt::maps::COccupancyGridMap3D::getCellFreeness(unsigned int, unsigned int, unsigned int) const --> float
getFreenessByPos(...)
getFreenessByPos(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, x: float, y: float, z: float) -> float
 
Read the real valued [0,1] contents of a voxel, given its coordinates 
 
C++: mrpt::maps::COccupancyGridMap3D::getFreenessByPos(float, float, float) const --> float
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, outObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
Returns a 3D object representing the map. 
 renderingOptions 
 
C++: mrpt::maps::COccupancyGridMap3D::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
insertPointCloud(...)
insertPointCloud(*args, **kwargs)
Overloaded function.
 
1. insertPointCloud(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, sensorCenter: mrpt::math::TPoint3D_<double>, pts: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
2. insertPointCloud(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, sensorCenter: mrpt::math::TPoint3D_<double>, pts: mrpt.pymrpt.mrpt.maps.CPointsMap, maxValidRange: float) -> None
 
Calls insertRay() for each point in the point cloud, using as sensor
 central point (the origin of all rays), the given `sensorCenter`.
 
 
 If a point has larger distance from
 `sensorCenter` than `maxValidRange`, it will be considered a non-echo,
 and NO occupied voxel will be created at the end of the segment.
 
 
 insertionOptions parameters are observed in this method.
 
C++: mrpt::maps::COccupancyGridMap3D::insertPointCloud(const struct mrpt::math::TPoint3D_<double> &, const class mrpt::maps::CPointsMap &, const float) --> void
insertRay(...)
insertRay(*args, **kwargs)
Overloaded function.
 
1. insertRay(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, sensor: mrpt::math::TPoint3D_<double>, end: mrpt::math::TPoint3D_<double>) -> None
 
2. insertRay(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, sensor: mrpt::math::TPoint3D_<double>, end: mrpt::math::TPoint3D_<double>, endIsOccupied: bool) -> None
 
Increases the freeness of a ray segment, and the occupancy of the voxel
 at its end point (unless endIsOccupied=false).
 Normally, users would prefer the higher-level method
 CMetricMap::insertObservation()
 
C++: mrpt::maps::COccupancyGridMap3D::insertRay(const struct mrpt::math::TPoint3D_<double> &, const struct mrpt::math::TPoint3D_<double> &, bool) --> void
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D) -> bool
 
Returns true upon map construction or after calling clear(), the return
  changes to false upon successful insertObservation() or any other
 method to load data in the map.
 
C++: mrpt::maps::COccupancyGridMap3D::isEmpty() const --> bool
resizeGrid(...)
resizeGrid(*args, **kwargs)
Overloaded function.
 
1. resizeGrid(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, corner_min: mrpt::math::TPoint3D_<double>, corner_max: mrpt::math::TPoint3D_<double>) -> None
 
2. resizeGrid(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, corner_min: mrpt::math::TPoint3D_<double>, corner_max: mrpt::math::TPoint3D_<double>, new_voxels_default_value: float) -> None
 
Change the size of gridmap, maintaining previous contents.
 
 
 Value of new voxels, tipically 0.5
 
 
 setSize()
 
C++: mrpt::maps::COccupancyGridMap3D::resizeGrid(const struct mrpt::math::TPoint3D_<double> &, const struct mrpt::math::TPoint3D_<double> &, float) --> void
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, f: str) -> None
 
C++: mrpt::maps::COccupancyGridMap3D::saveMetricMapRepresentationToFile(const std::string &) const --> void
setCellFreeness(...)
setCellFreeness(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, cx: int, cy: int, cz: int, value: float) -> None
 
Change the contents [0,1] (0:occupied, 1:free) of a voxel, given its
 index. 
 
C++: mrpt::maps::COccupancyGridMap3D::setCellFreeness(unsigned int, unsigned int, unsigned int, float) --> void
setFreenessByPos(...)
setFreenessByPos(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, x: float, y: float, z: float, value: float) -> None
 
Change the contents [0,1] of a voxel, given its coordinates 
 
C++: mrpt::maps::COccupancyGridMap3D::setFreenessByPos(float, float, float, float) --> void
setSize(...)
setSize(*args, **kwargs)
Overloaded function.
 
1. setSize(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, corner_min: mrpt::math::TPoint3D_<double>, corner_max: mrpt::math::TPoint3D_<double>, resolution: float) -> None
 
2. setSize(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, corner_min: mrpt::math::TPoint3D_<double>, corner_max: mrpt::math::TPoint3D_<double>, resolution: float, default_value: float) -> None
 
Change the size of gridmap, erasing all its previous contents.
 
 
 The new size of voxels.
 
 
 The value of voxels, tipically 0.5.
 
 
 ResizeGrid
 
C++: mrpt::maps::COccupancyGridMap3D::setSize(const struct mrpt::math::TPoint3D_<double> &, const struct mrpt::math::TPoint3D_<double> &, double, float) --> void
updateCell(...)
updateCell(self: mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D, cx_idx: int, cy_idx: int, cz_idx: int, v: float) -> None
 
Performs the Bayesian fusion of a new observation of a cell  
 
 updateInfoChangeOnly, updateCell_fast_occupied, updateCell_fast_free 
 
C++: mrpt::maps::COccupancyGridMap3D::updateCell(int, int, int, float) --> void

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::COccupancyGridMap3D::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::COccupancyGridMap3D::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &
l2p(...) from builtins.PyCapsule
l2p(l: int) -> float
 
Scales an integer representation of the log-odd into a real valued
 probability in [0,1], using p=exp(l)/(1+exp(l))  
 
C++: mrpt::maps::COccupancyGridMap3D::l2p(const signed char) --> float
l2p_255(...) from builtins.PyCapsule
l2p_255(l: int) -> int
 
Scales an integer representation of the log-odd into a linear scale
 [0,255], using p=exp(l)/(1+exp(l)) 
 
C++: mrpt::maps::COccupancyGridMap3D::l2p_255(const signed char) --> uint8_t
p2l(...) from builtins.PyCapsule
p2l(p: float) -> int
 
Scales a real valued probability in [0,1] to an integer representation
 of: log(p)-log(1-p)  in the valid range of voxelType 
 
C++: mrpt::maps::COccupancyGridMap3D::p2l(const float) --> signed char

Data descriptors defined here:
insertionOptions
likelihoodOptions
renderingOptions

Data and other attributes defined here:
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D.TInsertionOptions'>
With this struct options are provided to the observation insertion
process.
 
 
CObservation::insertIntoGridMap
TLikelihoodMethod = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D.TLikelihoodMethod'>
TLikelihoodOptions = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D.TLikelihoodOptions'>
With this struct options are provided to the observation likelihood
computation process
TMapDefinition = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D.TMapDefinition'>
TMapDefinitionBase = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D.TMapDefinitionBase'>
TRenderingOptions = <class 'mrpt.pymrpt.mrpt.maps.COccupancyGridMap3D.TRenderingOptions'>
Options for the conversion of a mrpt::maps::COccupancyGridMap3D into a
mrpt::opengl::COctoMapVoxels
lmLikelihoodField_Thrun = <TLikelihoodMethod.lmLikelihoodField_Thrun: 0>
lmRayTracing = <TLikelihoodMethod.lmRayTracing: 1>

Methods inherited from CMetricMap:
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
Erase all the contents of the map 
 
C++: mrpt::maps::CMetricMap::clear() --> void
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matchings between this and another 3D points map - method
used in 3D-ICP.
  This method finds the set of point pairs in each map.
 
  The method is the most time critical one into ICP-like algorithms.
 
  The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.CMetricMap, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map. 
 
C++: mrpt::maps::CMetricMap::squareDistanceToClosestCorrespondence(float, float) const --> float

Data descriptors inherited from CMetricMap:
genericMapParams

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Methods inherited from CLogOddsGridMap3D_signed_char_t:
updateCell_fast_free(...)
updateCell_fast_free(*args, **kwargs)
Overloaded function.
 
1. updateCell_fast_free(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap3D_signed_char_t, theCell: int, logodd_obs: int, thres: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap3D<signed char>::updateCell_fast_free(signed char *, const signed char, const signed char) --> void
 
2. updateCell_fast_free(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap3D_signed_char_t, x: int, y: int, z: int, logodd_obs: int, thres: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap3D<signed char>::updateCell_fast_free(const unsigned int, const unsigned int, const unsigned int, const signed char, const signed char) --> void
updateCell_fast_occupied(...)
updateCell_fast_occupied(*args, **kwargs)
Overloaded function.
 
1. updateCell_fast_occupied(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap3D_signed_char_t, theCell: int, logodd_obs: int, thres: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap3D<signed char>::updateCell_fast_occupied(signed char *, const signed char, const signed char) --> void
 
2. updateCell_fast_occupied(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap3D_signed_char_t, x: int, y: int, z: int, logodd_obs: int, thres: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap3D<signed char>::updateCell_fast_occupied(const unsigned int, const unsigned int, const unsigned int, const signed char, const signed char) --> void

Data descriptors inherited from CLogOddsGridMap3D_signed_char_t:
m_grid

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class COctoMap(COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t)
    A three-dimensional probabilistic occupancy grid, implemented as an
octo-tree with the "octomap" C++ library.
 This version only stores occupancy information at each octree node. See the
base class mrpt::maps::COctoMapBase.
 
 
CMetricMap, the example in "MRPT/samples/octomap_simple"
 
 
Method resolution order:
COctoMap
COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::COctoMap::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> None
 
doc
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.COctoMap, resolution: float) -> None
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.COctoMap, arg0: mrpt.pymrpt.mrpt.maps.COctoMap) -> None
 
4. __init__(self: mrpt.pymrpt.mrpt.maps.COctoMap, arg0: mrpt.pymrpt.mrpt.maps.COctoMap) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.COctoMap, : mrpt.pymrpt.mrpt.maps.COctoMap) -> mrpt.pymrpt.mrpt.maps.COctoMap
 
C++: mrpt::maps::COctoMap::operator=(const class mrpt::maps::COctoMap &) --> class mrpt::maps::COctoMap &
calcNumNodes(...)
calcNumNodes(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> int
 
Traverses the tree to calculate the total number of nodes
 
C++: mrpt::maps::COctoMap::calcNumNodes() const --> size_t
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::COctoMap::clone() const --> class mrpt::rtti::CObject *
getAsOctoMapVoxels(...)
getAsOctoMapVoxels(self: mrpt.pymrpt.mrpt.maps.COctoMap, gl_obj: mrpt.pymrpt.mrpt.opengl.COctoMapVoxels) -> None
 
C++: mrpt::maps::COctoMap::getAsOctoMapVoxels(class mrpt::opengl::COctoMapVoxels &) const --> void
getClampingThresMax(...)
getClampingThresMax(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> float
 
C++: mrpt::maps::COctoMap::getClampingThresMax() const --> double
getClampingThresMaxLog(...)
getClampingThresMaxLog(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> float
 
C++: mrpt::maps::COctoMap::getClampingThresMaxLog() const --> float
getClampingThresMin(...)
getClampingThresMin(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> float
 
C++: mrpt::maps::COctoMap::getClampingThresMin() const --> double
getClampingThresMinLog(...)
getClampingThresMinLog(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> float
 
C++: mrpt::maps::COctoMap::getClampingThresMinLog() const --> float
getMetricMax(...)
getMetricMax(self: mrpt.pymrpt.mrpt.maps.COctoMap, x: float, y: float, z: float) -> None
 
maximum value of the bounding box of all known space in x, y, z
 
C++: mrpt::maps::COctoMap::getMetricMax(double &, double &, double &) --> void
getMetricMin(...)
getMetricMin(self: mrpt.pymrpt.mrpt.maps.COctoMap, x: float, y: float, z: float) -> None
 
minimum value of the bounding box of all known space in x, y, z
 
C++: mrpt::maps::COctoMap::getMetricMin(double &, double &, double &) --> void
getMetricSize(...)
getMetricSize(self: mrpt.pymrpt.mrpt.maps.COctoMap, x: float, y: float, z: float) -> None
 
Size of OcTree (all known space) in meters for x, y and z dimension
 
C++: mrpt::maps::COctoMap::getMetricSize(double &, double &, double &) --> void
getNumLeafNodes(...)
getNumLeafNodes(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> int
 
Traverses the tree to calculate the total number of leaf nodes
 
C++: mrpt::maps::COctoMap::getNumLeafNodes() const --> size_t
getOccupancyThres(...)
getOccupancyThres(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> float
 
C++: mrpt::maps::COctoMap::getOccupancyThres() const --> double
getOccupancyThresLog(...)
getOccupancyThresLog(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> float
 
C++: mrpt::maps::COctoMap::getOccupancyThresLog() const --> float
getProbHit(...)
getProbHit(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> float
 
C++: mrpt::maps::COctoMap::getProbHit() const --> double
getProbHitLog(...)
getProbHitLog(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> float
 
C++: mrpt::maps::COctoMap::getProbHitLog() const --> float
getProbMiss(...)
getProbMiss(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> float
 
C++: mrpt::maps::COctoMap::getProbMiss() const --> double
getProbMissLog(...)
getProbMissLog(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> float
 
C++: mrpt::maps::COctoMap::getProbMissLog() const --> float
getResolution(...)
getResolution(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> float
 
C++: mrpt::maps::COctoMap::getResolution() const --> double
getTreeDepth(...)
getTreeDepth(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> int
 
C++: mrpt::maps::COctoMap::getTreeDepth() const --> unsigned int
insertRay(...)
insertRay(self: mrpt.pymrpt.mrpt.maps.COctoMap, end_x: float, end_y: float, end_z: float, sensor_x: float, sensor_y: float, sensor_z: float) -> None
 
Just like insertPointCloud but with a single ray. 
 
C++: mrpt::maps::COctoMap::insertRay(const float, const float, const float, const float, const float, const float) --> void
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> bool
 
Returns true if the map is empty/no observation has been inserted 
 
C++: mrpt::maps::COctoMap::isEmpty() const --> bool
isPointWithinOctoMap(...)
isPointWithinOctoMap(self: mrpt.pymrpt.mrpt.maps.COctoMap, x: float, y: float, z: float) -> bool
 
Check whether the given point lies within the volume covered by the
 octomap (that is, whether it is "mapped") 
 
C++: mrpt::maps::COctoMap::isPointWithinOctoMap(const float, const float, const float) const --> bool
memoryFullGrid(...)
memoryFullGrid(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> int
 
Memory usage of a full grid of the same size as the OcTree in
 bytes (for comparison)
 
C++: mrpt::maps::COctoMap::memoryFullGrid() const --> size_t
memoryUsage(...)
memoryUsage(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> int
 
Memory usage of the complete octree in bytes (may vary between
 architectures)
 
C++: mrpt::maps::COctoMap::memoryUsage() const --> size_t
memoryUsageNode(...)
memoryUsageNode(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> int
 
Memory usage of the a single octree node
 
C++: mrpt::maps::COctoMap::memoryUsageNode() const --> size_t
setClampingThresMax(...)
setClampingThresMax(self: mrpt.pymrpt.mrpt.maps.COctoMap, thresProb: float) -> None
 
C++: mrpt::maps::COctoMap::setClampingThresMax(double) --> void
setClampingThresMin(...)
setClampingThresMin(self: mrpt.pymrpt.mrpt.maps.COctoMap, thresProb: float) -> None
 
C++: mrpt::maps::COctoMap::setClampingThresMin(double) --> void
setOccupancyThres(...)
setOccupancyThres(self: mrpt.pymrpt.mrpt.maps.COctoMap, prob: float) -> None
 
C++: mrpt::maps::COctoMap::setOccupancyThres(double) --> void
setProbHit(...)
setProbHit(self: mrpt.pymrpt.mrpt.maps.COctoMap, prob: float) -> None
 
C++: mrpt::maps::COctoMap::setProbHit(double) --> void
setProbMiss(...)
setProbMiss(self: mrpt.pymrpt.mrpt.maps.COctoMap, prob: float) -> None
 
C++: mrpt::maps::COctoMap::setProbMiss(double) --> void
size(...)
size(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> int
 
The number of nodes in the tree
 
C++: mrpt::maps::COctoMap::size() const --> size_t
updateVoxel(...)
updateVoxel(self: mrpt.pymrpt.mrpt.maps.COctoMap, x: float, y: float, z: float, occupied: bool) -> None
 
Manually updates the occupancy of the voxel at (x,y,z) as being occupied
 (true) or free (false), using the log-odds parameters in 
 
 
C++: mrpt::maps::COctoMap::updateVoxel(const double, const double, const double, bool) --> void
volume(...)
volume(self: mrpt.pymrpt.mrpt.maps.COctoMap) -> float
 
C++: mrpt::maps::COctoMap::volume() --> double

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::COctoMap::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::COctoMap::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data and other attributes defined here:
TMapDefinition = <class 'mrpt.pymrpt.mrpt.maps.COctoMap.TMapDefinition'>
TMapDefinitionBase = <class 'mrpt.pymrpt.mrpt.maps.COctoMap.TMapDefinitionBase'>

Methods inherited from COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t:
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> str
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::asString() const --> std::string
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
castRay(...)
castRay(*args, **kwargs)
Overloaded function.
 
1. castRay(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, origin: mrpt::math::TPoint3D_<double>, direction: mrpt::math::TPoint3D_<double>, end: mrpt::math::TPoint3D_<double>) -> bool
 
2. castRay(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, origin: mrpt::math::TPoint3D_<double>, direction: mrpt::math::TPoint3D_<double>, end: mrpt::math::TPoint3D_<double>, ignoreUnknownCells: bool) -> bool
 
3. castRay(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, origin: mrpt::math::TPoint3D_<double>, direction: mrpt::math::TPoint3D_<double>, end: mrpt::math::TPoint3D_<double>, ignoreUnknownCells: bool, maxRange: float) -> bool
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::castRay(const struct mrpt::math::TPoint3D_<double> &, const struct mrpt::math::TPoint3D_<double> &, struct mrpt::math::TPoint3D_<double> &, bool, double) const --> bool
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> None
 
Erase all the contents of the map 
 
C++: mrpt::maps::CMetricMap::clear() --> void
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
Computes the ratio in [0,1] of correspondences between "this" and the
 "otherMap" map, whose 6D pose relative to "this" is "otherMapPose"
   In the case of a multi-metric map, this returns the average between the
 maps. This method always return 0 for grid maps.
 
 
      [IN] The other map to compute the matching with.
 
 
  [IN] The 6D pose of the other map as seen from
 "this".
 
 
        [IN] Matching parameters
 
 
 The matching ratio [0,1]
 
 
 determineMatching2D
 
C++: mrpt::maps::CMetricMap::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matching between this and another 2D point map, which
includes finding:
   - The set of points pairs in each map
   - The mean squared distance between corresponding pairs.
 
   The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
   This method is the most time critical one into ICP-like algorithms.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matchings between this and another 3D points map - method
used in 3D-ICP.
  This method finds the set of point pairs in each map.
 
  The method is the most time critical one into ICP-like algorithms.
 
  The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
getPointOccupancy(...)
getPointOccupancy(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, x: float, y: float, z: float, prob_occupancy: float) -> bool
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::getPointOccupancy(const float, const float, const float, double &) const --> bool
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, o: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
insertPointCloud(...)
insertPointCloud(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, ptMap: mrpt.pymrpt.mrpt.maps.CPointsMap, sensor_x: float, sensor_y: float, sensor_z: float) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::insertPointCloud(const class mrpt::maps::CPointsMap &, const float, const float, const float) --> void
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, Map: mrpt.pymrpt.mrpt.maps.CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, Map: mrpt.pymrpt.mrpt.maps.CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(*args, **kwargs)
Overloaded function.
 
1. saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, filNamePrefix: str) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::saveMetricMapRepresentationToFile(const std::string &) const --> void
 
2. saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, filNamePrefix: str) -> None
 
This virtual method saves the map to a file "filNamePrefix"+<
 some_file_extension >, as an image or in any other applicable way (Notice
 that other methods to save the map may be implemented in classes
 implementing this virtual interface). 
 
C++: mrpt::maps::CMetricMap::saveMetricMapRepresentationToFile(const std::string &) const --> void
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map. 
 
C++: mrpt::maps::CMetricMap::squareDistanceToClosestCorrespondence(float, float) const --> float

Data descriptors inherited from COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t:
genericMapParams
insertionOptions
likelihoodOptions
renderingOptions

Data and other attributes inherited from COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t:
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t.TInsertionOptions'>
TLikelihoodOptions = <class 'mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t.TLikelihoodOptions'>
TRenderingOptions = <class 'mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t.TRenderingOptions'>

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t(CMetricMap)
    
Method resolution order:
COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CMetricMap::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(self, /, *args, **kwargs)
Initialize self.  See help(type(self)) for accurate signature.
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> str
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::asString() const --> std::string
assign(...)
assign(*args, **kwargs)
Overloaded function.
 
1. assign(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, : mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::operator=(const class mrpt::maps::COctoMapBase<class octomap::ColorOcTree, class octomap::ColorOcTreeNode> &) --> class mrpt::maps::COctoMapBase<class octomap::ColorOcTree, class octomap::ColorOcTreeNode> &
 
2. assign(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, : mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt.pymrpt.mrpt.maps.CMetricMap
 
C++: mrpt::maps::CMetricMap::operator=(const class mrpt::maps::CMetricMap &) --> class mrpt::maps::CMetricMap &
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
castRay(...)
castRay(*args, **kwargs)
Overloaded function.
 
1. castRay(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, origin: mrpt::math::TPoint3D_<double>, direction: mrpt::math::TPoint3D_<double>, end: mrpt::math::TPoint3D_<double>) -> bool
 
2. castRay(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, origin: mrpt::math::TPoint3D_<double>, direction: mrpt::math::TPoint3D_<double>, end: mrpt::math::TPoint3D_<double>, ignoreUnknownCells: bool) -> bool
 
3. castRay(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, origin: mrpt::math::TPoint3D_<double>, direction: mrpt::math::TPoint3D_<double>, end: mrpt::math::TPoint3D_<double>, ignoreUnknownCells: bool, maxRange: float) -> bool
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::castRay(const struct mrpt::math::TPoint3D_<double> &, const struct mrpt::math::TPoint3D_<double> &, struct mrpt::math::TPoint3D_<double> &, bool, double) const --> bool
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> None
 
Erase all the contents of the map 
 
C++: mrpt::maps::CMetricMap::clear() --> void
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
Computes the ratio in [0,1] of correspondences between "this" and the
 "otherMap" map, whose 6D pose relative to "this" is "otherMapPose"
   In the case of a multi-metric map, this returns the average between the
 maps. This method always return 0 for grid maps.
 
 
      [IN] The other map to compute the matching with.
 
 
  [IN] The 6D pose of the other map as seen from
 "this".
 
 
        [IN] Matching parameters
 
 
 The matching ratio [0,1]
 
 
 determineMatching2D
 
C++: mrpt::maps::CMetricMap::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matching between this and another 2D point map, which
includes finding:
   - The set of points pairs in each map
   - The mean squared distance between corresponding pairs.
 
   The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
   This method is the most time critical one into ICP-like algorithms.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matchings between this and another 3D points map - method
used in 3D-ICP.
  This method finds the set of point pairs in each map.
 
  The method is the most time critical one into ICP-like algorithms.
 
  The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
getAsOctoMapVoxels(...)
getAsOctoMapVoxels(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, gl_obj: mrpt.pymrpt.mrpt.opengl.COctoMapVoxels) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::getAsOctoMapVoxels(class mrpt::opengl::COctoMapVoxels &) const --> void
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
getClampingThresMax(...)
getClampingThresMax(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::getClampingThresMax() const --> double
getClampingThresMaxLog(...)
getClampingThresMaxLog(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::getClampingThresMaxLog() const --> float
getClampingThresMin(...)
getClampingThresMin(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::getClampingThresMin() const --> double
getClampingThresMinLog(...)
getClampingThresMinLog(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::getClampingThresMinLog() const --> float
getOccupancyThres(...)
getOccupancyThres(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::getOccupancyThres() const --> double
getOccupancyThresLog(...)
getOccupancyThresLog(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::getOccupancyThresLog() const --> float
getPointOccupancy(...)
getPointOccupancy(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, x: float, y: float, z: float, prob_occupancy: float) -> bool
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::getPointOccupancy(const float, const float, const float, double &) const --> bool
getProbHit(...)
getProbHit(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::getProbHit() const --> double
getProbHitLog(...)
getProbHitLog(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::getProbHitLog() const --> float
getProbMiss(...)
getProbMiss(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::getProbMiss() const --> double
getProbMissLog(...)
getProbMissLog(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::getProbMissLog() const --> float
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, o: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
insertPointCloud(...)
insertPointCloud(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, ptMap: mrpt.pymrpt.mrpt.maps.CPointsMap, sensor_x: float, sensor_y: float, sensor_z: float) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::insertPointCloud(const class mrpt::maps::CPointsMap &, const float, const float, const float) --> void
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t) -> bool
 
Returns true if the map is empty/no observation has been inserted.
 
C++: mrpt::maps::CMetricMap::isEmpty() const --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, Map: mrpt.pymrpt.mrpt.maps.CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, Map: mrpt.pymrpt.mrpt.maps.CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(*args, **kwargs)
Overloaded function.
 
1. saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, filNamePrefix: str) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::saveMetricMapRepresentationToFile(const std::string &) const --> void
 
2. saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, filNamePrefix: str) -> None
 
This virtual method saves the map to a file "filNamePrefix"+<
 some_file_extension >, as an image or in any other applicable way (Notice
 that other methods to save the map may be implemented in classes
 implementing this virtual interface). 
 
C++: mrpt::maps::CMetricMap::saveMetricMapRepresentationToFile(const std::string &) const --> void
setClampingThresMax(...)
setClampingThresMax(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, thresProb: float) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::setClampingThresMax(double) --> void
setClampingThresMin(...)
setClampingThresMin(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, thresProb: float) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::setClampingThresMin(double) --> void
setOccupancyThres(...)
setOccupancyThres(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, prob: float) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::setOccupancyThres(double) --> void
setProbHit(...)
setProbHit(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, prob: float) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::setProbHit(double) --> void
setProbMiss(...)
setProbMiss(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, prob: float) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::ColorOcTree, octomap::ColorOcTreeNode>::setProbMiss(double) --> void
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_ColorOcTree_octomap_ColorOcTreeNode_t, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map. 
 
C++: mrpt::maps::CMetricMap::squareDistanceToClosestCorrespondence(float, float) const --> float

Static methods defined here:
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CMetricMap::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
genericMapParams
insertionOptions
likelihoodOptions
renderingOptions

Data and other attributes defined here:
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.COctoMapBase_octom...ree_octomap_ColorOcTreeNode_t.TInsertionOptions'>
TLikelihoodOptions = <class 'mrpt.pymrpt.mrpt.maps.COctoMapBase_octom...ee_octomap_ColorOcTreeNode_t.TLikelihoodOptions'>
TRenderingOptions = <class 'mrpt.pymrpt.mrpt.maps.COctoMapBase_octom...ree_octomap_ColorOcTreeNode_t.TRenderingOptions'>

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
clone(...)
clone(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Returns a deep copy (clone) of the object, indepently of its class. 
 
C++: mrpt::rtti::CObject::clone() const --> class mrpt::rtti::CObject *
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t(CMetricMap)
    
Method resolution order:
COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CMetricMap::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(self, /, *args, **kwargs)
Initialize self.  See help(type(self)) for accurate signature.
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> str
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::asString() const --> std::string
assign(...)
assign(*args, **kwargs)
Overloaded function.
 
1. assign(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, : mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::operator=(const class mrpt::maps::COctoMapBase<class octomap::OcTree, class octomap::OcTreeNode> &) --> class mrpt::maps::COctoMapBase<class octomap::OcTree, class octomap::OcTreeNode> &
 
2. assign(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, : mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt.pymrpt.mrpt.maps.CMetricMap
 
C++: mrpt::maps::CMetricMap::operator=(const class mrpt::maps::CMetricMap &) --> class mrpt::maps::CMetricMap &
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
castRay(...)
castRay(*args, **kwargs)
Overloaded function.
 
1. castRay(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, origin: mrpt::math::TPoint3D_<double>, direction: mrpt::math::TPoint3D_<double>, end: mrpt::math::TPoint3D_<double>) -> bool
 
2. castRay(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, origin: mrpt::math::TPoint3D_<double>, direction: mrpt::math::TPoint3D_<double>, end: mrpt::math::TPoint3D_<double>, ignoreUnknownCells: bool) -> bool
 
3. castRay(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, origin: mrpt::math::TPoint3D_<double>, direction: mrpt::math::TPoint3D_<double>, end: mrpt::math::TPoint3D_<double>, ignoreUnknownCells: bool, maxRange: float) -> bool
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::castRay(const struct mrpt::math::TPoint3D_<double> &, const struct mrpt::math::TPoint3D_<double> &, struct mrpt::math::TPoint3D_<double> &, bool, double) const --> bool
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> None
 
Erase all the contents of the map 
 
C++: mrpt::maps::CMetricMap::clear() --> void
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
Computes the ratio in [0,1] of correspondences between "this" and the
 "otherMap" map, whose 6D pose relative to "this" is "otherMapPose"
   In the case of a multi-metric map, this returns the average between the
 maps. This method always return 0 for grid maps.
 
 
      [IN] The other map to compute the matching with.
 
 
  [IN] The 6D pose of the other map as seen from
 "this".
 
 
        [IN] Matching parameters
 
 
 The matching ratio [0,1]
 
 
 determineMatching2D
 
C++: mrpt::maps::CMetricMap::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matching between this and another 2D point map, which
includes finding:
   - The set of points pairs in each map
   - The mean squared distance between corresponding pairs.
 
   The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
   This method is the most time critical one into ICP-like algorithms.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matchings between this and another 3D points map - method
used in 3D-ICP.
  This method finds the set of point pairs in each map.
 
  The method is the most time critical one into ICP-like algorithms.
 
  The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
getAsOctoMapVoxels(...)
getAsOctoMapVoxels(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, gl_obj: mrpt.pymrpt.mrpt.opengl.COctoMapVoxels) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::getAsOctoMapVoxels(class mrpt::opengl::COctoMapVoxels &) const --> void
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
getClampingThresMax(...)
getClampingThresMax(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::getClampingThresMax() const --> double
getClampingThresMaxLog(...)
getClampingThresMaxLog(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::getClampingThresMaxLog() const --> float
getClampingThresMin(...)
getClampingThresMin(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::getClampingThresMin() const --> double
getClampingThresMinLog(...)
getClampingThresMinLog(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::getClampingThresMinLog() const --> float
getOccupancyThres(...)
getOccupancyThres(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::getOccupancyThres() const --> double
getOccupancyThresLog(...)
getOccupancyThresLog(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::getOccupancyThresLog() const --> float
getPointOccupancy(...)
getPointOccupancy(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, x: float, y: float, z: float, prob_occupancy: float) -> bool
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::getPointOccupancy(const float, const float, const float, double &) const --> bool
getProbHit(...)
getProbHit(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::getProbHit() const --> double
getProbHitLog(...)
getProbHitLog(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::getProbHitLog() const --> float
getProbMiss(...)
getProbMiss(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::getProbMiss() const --> double
getProbMissLog(...)
getProbMissLog(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> float
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::getProbMissLog() const --> float
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, o: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, sf: mrpt.pymrpt.mrpt.obs.CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
insertPointCloud(...)
insertPointCloud(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, ptMap: mrpt.pymrpt.mrpt.maps.CPointsMap, sensor_x: float, sensor_y: float, sensor_z: float) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::insertPointCloud(const class mrpt::maps::CPointsMap &, const float, const float, const float) --> void
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t) -> bool
 
Returns true if the map is empty/no observation has been inserted.
 
C++: mrpt::maps::CMetricMap::isEmpty() const --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, Map: mrpt.pymrpt.mrpt.maps.CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, Map: mrpt.pymrpt.mrpt.maps.CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(*args, **kwargs)
Overloaded function.
 
1. saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, filNamePrefix: str) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::saveMetricMapRepresentationToFile(const std::string &) const --> void
 
2. saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, filNamePrefix: str) -> None
 
This virtual method saves the map to a file "filNamePrefix"+<
 some_file_extension >, as an image or in any other applicable way (Notice
 that other methods to save the map may be implemented in classes
 implementing this virtual interface). 
 
C++: mrpt::maps::CMetricMap::saveMetricMapRepresentationToFile(const std::string &) const --> void
setClampingThresMax(...)
setClampingThresMax(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, thresProb: float) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::setClampingThresMax(double) --> void
setClampingThresMin(...)
setClampingThresMin(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, thresProb: float) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::setClampingThresMin(double) --> void
setOccupancyThres(...)
setOccupancyThres(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, prob: float) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::setOccupancyThres(double) --> void
setProbHit(...)
setProbHit(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, prob: float) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::setProbHit(double) --> void
setProbMiss(...)
setProbMiss(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, prob: float) -> None
 
C++: mrpt::maps::COctoMapBase<octomap::OcTree, octomap::OcTreeNode>::setProbMiss(double) --> void
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map. 
 
C++: mrpt::maps::CMetricMap::squareDistanceToClosestCorrespondence(float, float) const --> float

Static methods defined here:
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CMetricMap::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
genericMapParams
insertionOptions
likelihoodOptions
renderingOptions

Data and other attributes defined here:
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t.TInsertionOptions'>
TLikelihoodOptions = <class 'mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t.TLikelihoodOptions'>
TRenderingOptions = <class 'mrpt.pymrpt.mrpt.maps.COctoMapBase_octomap_OcTree_octomap_OcTreeNode_t.TRenderingOptions'>

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
clone(...)
clone(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Returns a deep copy (clone) of the object, indepently of its class. 
 
C++: mrpt::rtti::CObject::clone() const --> class mrpt::rtti::CObject *
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CPointCloudFilterBase(pybind11_builtins.pybind11_object)
    Virtual base class for all point-cloud filtering algorithm. See derived
classes for implementations.
 
 
CPointsMap
 
 
Method resolution order:
CPointCloudFilterBase
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CPointCloudFilterBase) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CPointCloudFilterBase, arg0: mrpt.pymrpt.mrpt.maps.CPointCloudFilterBase) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CPointCloudFilterBase, : mrpt.pymrpt.mrpt.maps.CPointCloudFilterBase) -> mrpt.pymrpt.mrpt.maps.CPointCloudFilterBase
 
C++: mrpt::maps::CPointCloudFilterBase::operator=(const class mrpt::maps::CPointCloudFilterBase &) --> class mrpt::maps::CPointCloudFilterBase &
filter(...)
filter(*args, **kwargs)
Overloaded function.
 
1. filter(self: mrpt.pymrpt.mrpt.maps.CPointCloudFilterBase, inout_pointcloud: mrpt.pymrpt.mrpt.maps.CPointsMap, pc_timestamp: mrpt.pymrpt.std.chrono.time_point_mrpt_Clock_std_chrono_duration_long_std_ratio_1_10000000_t, pc_reference_pose: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
2. filter(self: mrpt.pymrpt.mrpt.maps.CPointCloudFilterBase, inout_pointcloud: mrpt.pymrpt.mrpt.maps.CPointsMap, pc_timestamp: mrpt.pymrpt.std.chrono.time_point_mrpt_Clock_std_chrono_duration_long_std_ratio_1_10000000_t, pc_reference_pose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt::maps::CPointCloudFilterBase::TExtraFilterParams) -> None
 
Apply the filtering algorithm to the pointcloud. 
 
C++: mrpt::maps::CPointCloudFilterBase::filter(class mrpt::maps::CPointsMap *, const mrpt::Clock::time_point, const class mrpt::poses::CPose3D &, struct mrpt::maps::CPointCloudFilterBase::TExtraFilterParams *) --> void

Data and other attributes defined here:
TExtraFilterParams = <class 'mrpt.pymrpt.mrpt.maps.CPointCloudFilterBase.TExtraFilterParams'>

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CPointCloudFilterByDistance(CPointCloudFilterBase)
    Implementation of pointcloud filtering based on requisities for minimum
neigbouring points in both,
  the current timestamp and a previous one.
 
 
CPointsMap
 
 
Method resolution order:
CPointCloudFilterByDistance
CPointCloudFilterBase
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CPointCloudFilterByDistance) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CPointCloudFilterByDistance, arg0: mrpt.pymrpt.mrpt.maps.CPointCloudFilterByDistance) -> None
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CPointCloudFilterByDistance, arg0: mrpt.pymrpt.mrpt.maps.CPointCloudFilterByDistance) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CPointCloudFilterByDistance, : mrpt.pymrpt.mrpt.maps.CPointCloudFilterByDistance) -> mrpt.pymrpt.mrpt.maps.CPointCloudFilterByDistance
 
C++: mrpt::maps::CPointCloudFilterByDistance::operator=(const class mrpt::maps::CPointCloudFilterByDistance &) --> class mrpt::maps::CPointCloudFilterByDistance &
filter(...)
filter(*args, **kwargs)
Overloaded function.
 
1. filter(self: mrpt.pymrpt.mrpt.maps.CPointCloudFilterByDistance, inout_pointcloud: mrpt.pymrpt.mrpt.maps.CPointsMap, pc_timestamp: mrpt.pymrpt.std.chrono.time_point_mrpt_Clock_std_chrono_duration_long_std_ratio_1_10000000_t, pc_reference_pose: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
2. filter(self: mrpt.pymrpt.mrpt.maps.CPointCloudFilterByDistance, inout_pointcloud: mrpt.pymrpt.mrpt.maps.CPointsMap, pc_timestamp: mrpt.pymrpt.std.chrono.time_point_mrpt_Clock_std_chrono_duration_long_std_ratio_1_10000000_t, pc_reference_pose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.CPointCloudFilterBase.TExtraFilterParams) -> None
 
C++: mrpt::maps::CPointCloudFilterByDistance::filter(class mrpt::maps::CPointsMap *, const mrpt::Clock::time_point, const class mrpt::poses::CPose3D &, struct mrpt::maps::CPointCloudFilterBase::TExtraFilterParams *) --> void

Data descriptors defined here:
options

Data and other attributes defined here:
TOptions = <class 'mrpt.pymrpt.mrpt.maps.CPointCloudFilterByDistance.TOptions'>

Data and other attributes inherited from CPointCloudFilterBase:
TExtraFilterParams = <class 'mrpt.pymrpt.mrpt.maps.CPointCloudFilterBase.TExtraFilterParams'>

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CPointsMap(CMetricMap, mrpt.pymrpt.mrpt.opengl.PLY_Importer, mrpt.pymrpt.mrpt.opengl.PLY_Exporter)
    A cloud of points in 2D or 3D, which can be built from a sequence of laser
scans or other sensors.
 This is a virtual class, thus only a derived class can be instantiated by
the user. The user most usually wants to use CSimplePointsMap.
 
 This class implements generic version of
mrpt::maps::CMetric::insertObservation() accepting these types of sensory
data:
  - mrpt::obs::CObservation2DRangeScan: 2D range scans
  - mrpt::obs::CObservation3DRangeScan: 3D range scans (Kinect, etc...)
  - mrpt::obs::CObservationRange: IRs, Sonars, etc.
  - mrpt::obs::CObservationVelodyneScan
  - mrpt::obs::CObservationPointCloud
 
Loading and saving in the standard LAS LiDAR point cloud format is supported
by installing `libLAS` and including the
header `<mrpt/maps/CPointsMaps_liblas.h>` in your program. Since MRPT 1.5.0
there is no need to build MRPT against libLAS to use this feature.
See LAS functions in 
 
 
CMetricMap, CPoint, CSerializable
 
 
Method resolution order:
CPointsMap
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
mrpt.pymrpt.mrpt.opengl.PLY_Importer
mrpt.pymrpt.mrpt.opengl.PLY_Exporter
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CPointsMap::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__iadd__(...)
__iadd__(self: mrpt.pymrpt.mrpt.maps.CPointsMap, anotherMap: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
Inserts another map into this one. 
 insertAnotherMap() 
 
C++: mrpt::maps::CPointsMap::operator+=(const class mrpt::maps::CPointsMap &) --> void
__init__(self, /, *args, **kwargs)
Initialize self.  See help(type(self)) for accurate signature.
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> str
 
Returns a short description of the map. 
 
C++: mrpt::maps::CPointsMap::asString() const --> std::string
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CPointsMap, o: mrpt.pymrpt.mrpt.maps.CPointsMap) -> mrpt.pymrpt.mrpt.maps.CPointsMap
 
C++: mrpt::maps::CPointsMap::operator=(const class mrpt::maps::CPointsMap &) --> class mrpt::maps::CPointsMap &
boundingBox(...)
boundingBox(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> mrpt.pymrpt.mrpt.math.TBoundingBox_float_t
 
Computes the bounding box of all the points, or (0,0 ,0,0, 0,0) if there
 are no points.
  Results are cached unless the map is somehow modified to avoid repeated
 calculations.
 
C++: mrpt::maps::CPointsMap::boundingBox() const --> struct mrpt::math::TBoundingBox_<float>
changeCoordinatesReference(...)
changeCoordinatesReference(*args, **kwargs)
Overloaded function.
 
1. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CPointsMap, b: mrpt.pymrpt.mrpt.poses.CPose2D) -> None
 
Replace each point 
 by 
 (pose
 compounding operator).
 
C++: mrpt::maps::CPointsMap::changeCoordinatesReference(const class mrpt::poses::CPose2D &) --> void
 
2. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CPointsMap, b: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
Replace each point 
 by 
 (pose
 compounding operator).
 
C++: mrpt::maps::CPointsMap::changeCoordinatesReference(const class mrpt::poses::CPose3D &) --> void
 
3. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CPointsMap, other: mrpt.pymrpt.mrpt.maps.CPointsMap, b: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
Copy all the points from "other" map to "this", replacing each point 
 
 
 by 
 (pose compounding operator).
 
C++: mrpt::maps::CPointsMap::changeCoordinatesReference(const class mrpt::maps::CPointsMap &, const class mrpt::poses::CPose3D &) --> void
clipOutOfRange(...)
clipOutOfRange(self: mrpt.pymrpt.mrpt.maps.CPointsMap, point: mrpt::math::TPoint2D_<double>, maxRange: float) -> None
 
Delete points which are more far than "maxRange" away from the given
 "point".
 
C++: mrpt::maps::CPointsMap::clipOutOfRange(const struct mrpt::math::TPoint2D_<double> &, float) --> void
clipOutOfRangeInZ(...)
clipOutOfRangeInZ(self: mrpt.pymrpt.mrpt.maps.CPointsMap, zMin: float, zMax: float) -> None
 
Delete points out of the given "z" axis range have been removed.
 
C++: mrpt::maps::CPointsMap::clipOutOfRangeInZ(float, float) --> void
compute3DDistanceToMesh(...)
compute3DDistanceToMesh(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap2: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, maxDistForCorrespondence: float, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, correspondencesRatio: float) -> None
 
Computes the matchings between this and another 3D points map.
           This method matches each point in the other map with the centroid of the
         3 closest points in 3D
           from this map (if the distance is below a defined threshold).
 
 
                                          [IN] The other map to compute the
         matching with.
 
 
                                  [IN] The pose of the other map as seen
         from "this".
 
 
   [IN] Maximum 2D linear distance
         between two points to be matched.
 
 
                          [OUT] The detected matchings pairs.
 
 
                  [OUT] The ratio [0,1] of points in
         otherMap with at least one correspondence.
 
 
 determineMatching3D
 
C++: mrpt::maps::CPointsMap::compute3DDistanceToMesh(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, float, class mrpt::tfest::TMatchingPairListTempl<float> &, float &) --> void
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
C++: mrpt::maps::CPointsMap::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
C++: mrpt::maps::CPointsMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
C++: mrpt::maps::CPointsMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
empty(...)
empty(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
STL-like method to check whether the map is empty: 
 
C++: mrpt::maps::CPointsMap::empty() const --> bool
enableFilterByHeight(...)
enableFilterByHeight(*args, **kwargs)
Overloaded function.
 
1. enableFilterByHeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
2. enableFilterByHeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap, enable: bool) -> None
 
Enable/disable the filter-by-height functionality 
 
 setHeightFilterLevels 
 
 Default upon construction is disabled. 
 
C++: mrpt::maps::CPointsMap::enableFilterByHeight(bool) --> void
extractCylinder(...)
extractCylinder(self: mrpt.pymrpt.mrpt.maps.CPointsMap, center: mrpt::math::TPoint2D_<double>, radius: float, zmin: float, zmax: float, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
Extracts the points in the map within a cylinder in 3D defined the
 provided radius and zmin/zmax values.
 
C++: mrpt::maps::CPointsMap::extractCylinder(const struct mrpt::math::TPoint2D_<double> &, const double, const double, const double, class mrpt::maps::CPointsMap *) --> void
extractPoints(...)
extractPoints(*args, **kwargs)
Overloaded function.
 
1. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
2. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap, R: float) -> None
 
3. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap, R: float, G: float) -> None
 
4. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap, R: float, G: float, B: float) -> None
 
Extracts the points in the map within the area defined by two corners.
  The points are coloured according the R,G,B input data.
 
C++: mrpt::maps::CPointsMap::extractPoints(const struct mrpt::math::TPoint3D_<double> &, const struct mrpt::math::TPoint3D_<double> &, class mrpt::maps::CPointsMap *, double, double, double) --> void
getHeightFilterLevels(...)
getHeightFilterLevels(self: mrpt.pymrpt.mrpt.maps.CPointsMap, _z_min: float, _z_max: float) -> None
 
Get the min/max Z levels for points to be actually inserted in the map
 
 
 enableFilterByHeight, setHeightFilterLevels 
 
C++: mrpt::maps::CPointsMap::getHeightFilterLevels(double &, double &) const --> void
getLargestDistanceFromOrigin(...)
getLargestDistanceFromOrigin(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> float
 
This method returns the largest distance from the origin to any of the
 points, such as a sphere centered at the origin with this radius cover
 ALL the points in the map (the results are buffered, such as, if the map
 is not modified, the second call will be much faster than the first one).
 
C++: mrpt::maps::CPointsMap::getLargestDistanceFromOrigin() const --> float
getLargestDistanceFromOriginNoRecompute(...)
getLargestDistanceFromOriginNoRecompute(self: mrpt.pymrpt.mrpt.maps.CPointsMap, output_is_valid: bool) -> float
 
Like  but returns in 
 = false if the distance was not already computed, skipping its
 computation then, unlike getLargestDistanceFromOrigin() 
 
C++: mrpt::maps::CPointsMap::getLargestDistanceFromOriginNoRecompute(bool &) const --> float
getPoint(...)
getPoint(*args, **kwargs)
Overloaded function.
 
1. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Access to a given point from map, as a 2D point. First index is 0.
 
 
 Throws std::exception on index out of bound.
 
 
 setPoint, getPointFast
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, float &, float &, float &) const --> void
 
2. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, float &, float &) const --> void
 
3. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, double &, double &, double &) const --> void
 
4. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, double &, double &) const --> void
 
5. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint2D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, struct mrpt::math::TPoint2D_<double> &) const --> void
 
6. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint3D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, struct mrpt::math::TPoint3D_<double> &) const --> void
getPointFast(...)
getPointFast(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Just like  but without checking out-of-bound index and
 without returning the point weight, just XYZ.
 
C++: mrpt::maps::CPointsMap::getPointFast(size_t, float &, float &, float &) const --> void
getPointRGB(...)
getPointRGB(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float, R: float, G: float, B: float) -> None
 
Access to a given point from map, and its colors, if the map defines
 them (othersise, R=G=B=1.0). First index is 0.
 
 
 The return value is the weight of the point (the times it has
 been fused)
 
 
 Throws std::exception on index out of bound.
 
C++: mrpt::maps::CPointsMap::getPointRGB(size_t, float &, float &, float &, float &, float &, float &) const --> void
getPointWeight(...)
getPointWeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int) -> int
 
Gets the point weight, which is ignored in all classes (defaults to 1)
 but in those which actually store that field (Note: No checks are done
 for out-of-bounds index).  
 
 setPointWeight
 
C++: mrpt::maps::CPointsMap::getPointWeight(size_t) const --> unsigned int
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.CPointsMap, outObj: mrpt::opengl::CSetOfObjects) -> None
 
Returns a 3D object representing the map.
  The color of the points is controlled by renderOptions
 
C++: mrpt::maps::CPointsMap::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
hasColorPoints(...)
hasColorPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
Returns true if the point map has a color field for each point 
 
C++: mrpt::maps::CPointsMap::hasColorPoints() const --> bool
insertAnotherMap(...)
insertAnotherMap(*args, **kwargs)
Overloaded function.
 
1. insertAnotherMap(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CPointsMap, otherPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
2. insertAnotherMap(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CPointsMap, otherPose: mrpt.pymrpt.mrpt.poses.CPose3D, filterOutPointsAtZero: bool) -> None
 
Insert the contents of another map into this one with some geometric
 transformation, without fusing close points.
 
 
 The other map whose points are to be inserted into this
 one.
 
 
 The pose of the other map in the coordinates of THIS map
 
 
 If true, points at (0,0,0) (in the frame of
 reference of `otherMap`) will be assumed to be invalid and will not be
 copied.
 
 
 fuseWith, addFrom
 
C++: mrpt::maps::CPointsMap::insertAnotherMap(const class mrpt::maps::CPointsMap *, const class mrpt::poses::CPose3D &, const bool) --> void
insertPoint(...)
insertPoint(*args, **kwargs)
Overloaded function.
 
1. insertPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x: float, y: float) -> None
 
2. insertPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x: float, y: float, z: float) -> None
 
Provides a way to insert (append) individual points into the map: the
 missing fields of child
 classes (color, weight, etc) are left to their default values
 
C++: mrpt::maps::CPointsMap::insertPoint(float, float, float) --> void
 
3. insertPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, p: mrpt::math::TPoint3D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::insertPoint(const struct mrpt::math::TPoint3D_<double> &) --> void
insertPointFast(...)
insertPointFast(*args, **kwargs)
Overloaded function.
 
1. insertPointFast(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x: float, y: float) -> None
 
2. insertPointFast(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x: float, y: float, z: float) -> None
 
The virtual method for  *without* calling
 mark_as_modified()   
 
C++: mrpt::maps::CPointsMap::insertPointFast(float, float, float) --> void
insertPointRGB(...)
insertPointRGB(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x: float, y: float, z: float, R: float, G: float, B: float) -> None
 
overload (RGB data is ignored in classes without color information)
 
C++: mrpt::maps::CPointsMap::insertPointRGB(float, float, float, float, float, float) --> void
internal_computeObservationLikelihood(...)
internal_computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CPointsMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
@} 
 
C++: mrpt::maps::CPointsMap::internal_computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
internal_computeObservationLikelihoodPointCloud3D(...)
internal_computeObservationLikelihoodPointCloud3D(self: mrpt.pymrpt.mrpt.maps.CPointsMap, pc_in_map: mrpt.pymrpt.mrpt.poses.CPose3D, xs: float, ys: float, zs: float, num_pts: int) -> float
 
C++: mrpt::maps::CPointsMap::internal_computeObservationLikelihoodPointCloud3D(const class mrpt::poses::CPose3D &, const float *, const float *, const float *, const unsigned long) const --> double
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
Returns true if the map is empty/no observation has been inserted.
 
C++: mrpt::maps::CPointsMap::isEmpty() const --> bool
isFilterByHeightEnabled(...)
isFilterByHeightEnabled(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
Return whether filter-by-height is enabled 
 enableFilterByHeight 
 
C++: mrpt::maps::CPointsMap::isFilterByHeightEnabled() const --> bool
kdtree_distance(...)
kdtree_distance(self: mrpt.pymrpt.mrpt.maps.CPointsMap, p1: float, idx_p2: int, size: int) -> float
 
Returns the distance between the vector "p1[0:size-1]" and the data
 point with index "idx_p2" stored in the class:
 
C++: mrpt::maps::CPointsMap::kdtree_distance(const float *, size_t, size_t) const --> float
kdtree_get_point_count(...)
kdtree_get_point_count(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> int
 
Must return the number of data points
 
C++: mrpt::maps::CPointsMap::kdtree_get_point_count() const --> size_t
kdtree_get_pt(...)
kdtree_get_pt(self: mrpt.pymrpt.mrpt.maps.CPointsMap, idx: int, dim: int) -> float
 
Returns the dim'th component of the idx'th point in the class:
 
C++: mrpt::maps::CPointsMap::kdtree_get_pt(size_t, int) const --> float
load2D_from_text_file(...)
load2D_from_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Load from a text file. Each line should contain an "X Y" coordinate
 pair, separated by whitespaces.
   Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::load2D_from_text_file(const std::string &) --> bool
load2Dor3D_from_text_file(...)
load2Dor3D_from_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str, is_3D: bool) -> bool
 
2D or 3D generic implementation of  and
 load3D_from_text_file 
 
C++: mrpt::maps::CPointsMap::load2Dor3D_from_text_file(const std::string &, const bool) --> bool
load3D_from_text_file(...)
load3D_from_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Load from a text file. Each line should contain an "X Y Z" coordinate
 tuple, separated by whitespaces.
   Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::load3D_from_text_file(const std::string &) --> bool
mark_as_modified(...)
mark_as_modified(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
Users normally don't need to call this. Called by this class or children
 classes, set m_largestDistanceFromOriginIsUpdated=false, invalidates the
 kd-tree cache, and such. 
 
C++: mrpt::maps::CPointsMap::mark_as_modified() const --> void
reserve(...)
reserve(self: mrpt.pymrpt.mrpt.maps.CPointsMap, newLength: int) -> None
 
Reserves memory for a given number of points: the size of the map does
 not change, it only reserves the memory.
  This is useful for situations where it is approximately known the final
 size of the map. This method is more
  efficient than constantly increasing the size of the buffers. Refer to
 the STL C++ library's "reserve" methods.
 
C++: mrpt::maps::CPointsMap::reserve(size_t) --> void
resize(...)
resize(self: mrpt.pymrpt.mrpt.maps.CPointsMap, newLength: int) -> None
 
Resizes all point buffers so they can hold the given number of points:
 newly created points are set to default values,
  and old contents are not changed.
 
 
 reserve, setPoint, setPointFast, setSize
 
C++: mrpt::maps::CPointsMap::resize(size_t) --> void
save2D_to_text_file(...)
save2D_to_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Save to a text file. Each line will contain "X Y" point coordinates.
                Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::save2D_to_text_file(const std::string &) const --> bool
save3D_to_text_file(...)
save3D_to_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Save to a text file. Each line will contain "X Y Z" point coordinates.
     Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::save3D_to_text_file(const std::string &) const --> bool
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.CPointsMap, filNamePrefix: str) -> None
 
This virtual method saves the map to a file "filNamePrefix"+<
 some_file_extension >, as an image or in any other applicable way (Notice
 that other methods to save the map may be implemented in classes
 implementing this virtual interface) 
 
C++: mrpt::maps::CPointsMap::saveMetricMapRepresentationToFile(const std::string &) const --> void
setHeightFilterLevels(...)
setHeightFilterLevels(self: mrpt.pymrpt.mrpt.maps.CPointsMap, _z_min: float, _z_max: float) -> None
 
Set the min/max Z levels for points to be actually inserted in the map
 (only if  was called before). 
 
C++: mrpt::maps::CPointsMap::setHeightFilterLevels(const double, const double) --> void
setPoint(...)
setPoint(*args, **kwargs)
Overloaded function.
 
1. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Changes a given point from map, with Z defaulting to 0 if not provided.
 
 
 Throws std::exception on index out of bound.
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, float, float, float) --> void
 
2. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint2D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, const struct mrpt::math::TPoint2D_<double> &) --> void
 
3. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint3D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, const struct mrpt::math::TPoint3D_<double> &) --> void
 
4. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float) -> None
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, float, float) --> void
setPointFast(...)
setPointFast(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Changes the coordinates of the given point (0-based index), *without*
 checking for out-of-bounds and *without* calling mark_as_modified().
 Also, color, intensity, or other data is left unchanged. 
 
 setPoint 
 
C++: mrpt::maps::CPointsMap::setPointFast(size_t, float, float, float) --> void
setPointRGB(...)
setPointRGB(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float, R: float, G: float, B: float) -> None
 
overload (RGB data is ignored in classes without color information)
 
C++: mrpt::maps::CPointsMap::setPointRGB(size_t, float, float, float, float, float, float) --> void
setPointWeight(...)
setPointWeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, w: int) -> None
 
Sets the point weight, which is ignored in all classes but those which
 actually store that field (Note: No checks are done for out-of-bounds
 index). 
 
 getPointWeight
 
C++: mrpt::maps::CPointsMap::setPointWeight(size_t, unsigned long) --> void
setSize(...)
setSize(self: mrpt.pymrpt.mrpt.maps.CPointsMap, newLength: int) -> None
 
Resizes all point buffers so they can hold the given number of points,
 *erasing* all previous contents
  and leaving all points to default values.
 
 
 reserve, setPoint, setPointFast, setSize
 
C++: mrpt::maps::CPointsMap::setSize(size_t) --> void
size(...)
size(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> int
 
Returns the number of stored points in the map.
 
C++: mrpt::maps::CPointsMap::size() const --> size_t
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map.
 
C++: mrpt::maps::CPointsMap::squareDistanceToClosestCorrespondence(float, float) const --> float
squareDistanceToClosestCorrespondenceT(...)
squareDistanceToClosestCorrespondenceT(self: mrpt.pymrpt.mrpt.maps.CPointsMap, p0: mrpt::math::TPoint2D_<double>) -> float
 
C++: mrpt::maps::CPointsMap::squareDistanceToClosestCorrespondenceT(const struct mrpt::math::TPoint2D_<double> &) const --> float

Static methods defined here:
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CPointsMap::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
insertionOptions
likelihoodOptions
renderOptions

Data and other attributes defined here:
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.CPointsMap.TInsertionOptions'>
With this struct options are provided to the observation insertion
process.
 
 
CObservation::insertIntoPointsMap
TLikelihoodOptions = <class 'mrpt.pymrpt.mrpt.maps.CPointsMap.TLikelihoodOptions'>
Options used when evaluating "computeObservationLikelihood" in the
derived classes.
 
 
CObservation::computeObservationLikelihood
TRenderOptions = <class 'mrpt.pymrpt.mrpt.maps.CPointsMap.TRenderOptions'>
Rendering options, used in getAs3DObject()

Methods inherited from CMetricMap:
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
Erase all the contents of the map 
 
C++: mrpt::maps::CMetricMap::clear() --> void
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void

Data descriptors inherited from CMetricMap:
genericMapParams

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
clone(...)
clone(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Returns a deep copy (clone) of the object, indepently of its class. 
 
C++: mrpt::rtti::CObject::clone() const --> class mrpt::rtti::CObject *
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Methods inherited from mrpt.pymrpt.mrpt.opengl.PLY_Importer:
getLoadPLYErrorString(...)
getLoadPLYErrorString(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer) -> str
 
Return a description of the error if loadFromPlyFile() returned false,
 or an empty string if the file was loaded without problems. 
 
C++: mrpt::opengl::PLY_Importer::getLoadPLYErrorString() const --> std::string
loadFromPlyFile(...)
loadFromPlyFile(*args, **kwargs)
Overloaded function.
 
1. loadFromPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer, filename: str) -> bool
 
2. loadFromPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer, filename: str, file_comments: List[str]) -> bool
 
3. loadFromPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer, filename: str, file_comments: List[str], file_obj_info: List[str]) -> bool
 
Loads from a PLY file.
 
 
 The filename to open. It can be either in binary or
 text format.
 
 
 If provided (!=nullptr) the list of comment
 strings stored in the file will be returned.
 
 
 If provided (!=nullptr) the list of "object
 info" strings stored in the file will be returned.
 
 
 false on any error in the file format or reading it. To obtain
 more details on the error you can call getLoadPLYErrorString()
 
C++: mrpt::opengl::PLY_Importer::loadFromPlyFile(const std::string &, class std::vector<std::string > *, class std::vector<std::string > *) --> bool

Methods inherited from mrpt.pymrpt.mrpt.opengl.PLY_Exporter:
getSavePLYErrorString(...)
getSavePLYErrorString(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter) -> str
 
Return a description of the error if loadFromPlyFile() returned false,
 or an empty string if the file was loaded without problems. 
 
C++: mrpt::opengl::PLY_Exporter::getSavePLYErrorString() const --> std::string
saveToPlyFile(...)
saveToPlyFile(*args, **kwargs)
Overloaded function.
 
1. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str) -> bool
 
2. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str, save_in_binary: bool) -> bool
 
3. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str, save_in_binary: bool, file_comments: List[str]) -> bool
 
4. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str, save_in_binary: bool, file_comments: List[str], file_obj_info: List[str]) -> bool
 
Saves to a PLY file.
 
 
 The filename to be saved.
 
 
 If provided (!=nullptr) the list of comment
 strings stored in the file will be returned.
 
 
 If provided (!=nullptr) the list of "object
 info" strings stored in the file will be returned.
 
 
 false on any error writing the file. To obtain more details on
 the error you can call getSavePLYErrorString()
 
C++: mrpt::opengl::PLY_Exporter::saveToPlyFile(const std::string &, bool, const class std::vector<std::string > &, const class std::vector<std::string > &) const --> bool

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CPointsMapXYZI(CPointsMap)
    A map of 3D points with reflectance/intensity (float).
 
 
mrpt::maps::CPointsMap, mrpt::maps::CMetricMap
 
 
Method resolution order:
CPointsMapXYZI
CPointsMap
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
mrpt.pymrpt.mrpt.opengl.PLY_Importer
mrpt.pymrpt.mrpt.opengl.PLY_Exporter
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CPointsMapXYZI::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, o: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, arg0: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI) -> None
 
4. __init__(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, arg0: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI) -> None
assign(...)
assign(*args, **kwargs)
Overloaded function.
 
1. assign(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, o: mrpt.pymrpt.mrpt.maps.CPointsMap) -> mrpt.pymrpt.mrpt.maps.CPointsMapXYZI
 
C++: mrpt::maps::CPointsMapXYZI::operator=(const class mrpt::maps::CPointsMap &) --> class mrpt::maps::CPointsMapXYZI &
 
2. assign(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, o: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI) -> mrpt.pymrpt.mrpt.maps.CPointsMapXYZI
 
C++: mrpt::maps::CPointsMapXYZI::operator=(const class mrpt::maps::CPointsMapXYZI &) --> class mrpt::maps::CPointsMapXYZI &
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CPointsMapXYZI::clone() const --> class mrpt::rtti::CObject *
getPointIntensity(...)
getPointIntensity(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, index: int) -> float
 
Retrieves a point intensity (range [0,1]) 
 
C++: mrpt::maps::CPointsMapXYZI::getPointIntensity(size_t) const --> float
getPointIntensity_fast(...)
getPointIntensity_fast(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, index: int) -> float
 
Like  but without checking for out-of-index erors 
 
C++: mrpt::maps::CPointsMapXYZI::getPointIntensity_fast(size_t) const --> float
getPointRGB(...)
getPointRGB(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, index: int, x: float, y: float, z: float, R_intensity: float, G_intensity: float, B_intensity: float) -> None
 
Retrieves a point and its color (colors range is [0,1])
 
C++: mrpt::maps::CPointsMapXYZI::getPointRGB(size_t, float &, float &, float &, float &, float &, float &) const --> void
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, outObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
Override of the default 3D scene builder to account for the individual
 points' color.
 
C++: mrpt::maps::CPointsMapXYZI::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
hasColorPoints(...)
hasColorPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI) -> bool
 
Returns true if the point map has a color field for each point 
 
C++: mrpt::maps::CPointsMapXYZI::hasColorPoints() const --> bool
insertPointFast(...)
insertPointFast(*args, **kwargs)
Overloaded function.
 
1. insertPointFast(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, x: float, y: float) -> None
 
2. insertPointFast(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, x: float, y: float, z: float) -> None
 
The virtual method for  *without* calling
 mark_as_modified()   
 
C++: mrpt::maps::CPointsMapXYZI::insertPointFast(float, float, float) --> void
insertPointRGB(...)
insertPointRGB(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, x: float, y: float, z: float, R_intensity: float, G_ignored: float, B_ignored: float) -> None
 
Adds a new point given its coordinates and color (colors range is [0,1])
 
C++: mrpt::maps::CPointsMapXYZI::insertPointRGB(float, float, float, float, float, float) --> void
loadFromKittiVelodyneFile(...)
loadFromKittiVelodyneFile(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, filename: str) -> bool
 
Loads from a Kitti dataset Velodyne scan binary file.
 The file can be gz compressed (only enabled if the filename ends in ".gz"
 to prevent spurious false autodetection of gzip files).
 
 
 true on success 
 
C++: mrpt::maps::CPointsMapXYZI::loadFromKittiVelodyneFile(const std::string &) --> bool
loadXYZI_from_text_file(...)
loadXYZI_from_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, file: str) -> bool
 
Loads from a text file, each line having "X Y Z I", I in [0,1].
 Returns false if any error occured, true elsewere. 
 
C++: mrpt::maps::CPointsMapXYZI::loadXYZI_from_text_file(const std::string &) --> bool
reserve(...)
reserve(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, newLength: int) -> None
 
from CPointsMap
        @{ 
 
C++: mrpt::maps::CPointsMapXYZI::reserve(size_t) --> void
resize(...)
resize(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, newLength: int) -> None
 
C++: mrpt::maps::CPointsMapXYZI::resize(size_t) --> void
saveToKittiVelodyneFile(...)
saveToKittiVelodyneFile(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, filename: str) -> bool
 
C++: mrpt::maps::CPointsMapXYZI::saveToKittiVelodyneFile(const std::string &) const --> bool
saveXYZI_to_text_file(...)
saveXYZI_to_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, file: str) -> bool
 
Save to a text file. In each line contains X Y Z (meters) I (intensity)
 Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMapXYZI::saveXYZI_to_text_file(const std::string &) const --> bool
setPointColor_fast(...)
setPointColor_fast(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, index: int, R: float, G: float, B: float) -> None
 
Like  but without checking for out-of-index erors 
 
C++: mrpt::maps::CPointsMapXYZI::setPointColor_fast(size_t, float, float, float) --> void
setPointIntensity(...)
setPointIntensity(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, index: int, intensity: float) -> None
 
Changes the intensity of a given point from the map. First index is 0.
 
 
 Throws std::exception on index out of bound.
 
C++: mrpt::maps::CPointsMapXYZI::setPointIntensity(size_t, float) --> void
setPointRGB(...)
setPointRGB(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, index: int, x: float, y: float, z: float, R_intensity: float, G_ignored: float, B_ignored: float) -> None
 
Changes a given point from map. First index is 0.
 
 
 Throws std::exception on index out of bound.
 
C++: mrpt::maps::CPointsMapXYZI::setPointRGB(size_t, float, float, float, float, float, float) --> void
setSize(...)
setSize(self: mrpt.pymrpt.mrpt.maps.CPointsMapXYZI, newLength: int) -> None
 
C++: mrpt::maps::CPointsMapXYZI::setSize(size_t) --> void

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CPointsMapXYZI::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CPointsMapXYZI::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data and other attributes defined here:
TMapDefinition = <class 'mrpt.pymrpt.mrpt.maps.CPointsMapXYZI.TMapDefinition'>
TMapDefinitionBase = <class 'mrpt.pymrpt.mrpt.maps.CPointsMapXYZI.TMapDefinitionBase'>

Methods inherited from CPointsMap:
__iadd__(...)
__iadd__(self: mrpt.pymrpt.mrpt.maps.CPointsMap, anotherMap: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
Inserts another map into this one. 
 insertAnotherMap() 
 
C++: mrpt::maps::CPointsMap::operator+=(const class mrpt::maps::CPointsMap &) --> void
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> str
 
Returns a short description of the map. 
 
C++: mrpt::maps::CPointsMap::asString() const --> std::string
boundingBox(...)
boundingBox(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> mrpt.pymrpt.mrpt.math.TBoundingBox_float_t
 
Computes the bounding box of all the points, or (0,0 ,0,0, 0,0) if there
 are no points.
  Results are cached unless the map is somehow modified to avoid repeated
 calculations.
 
C++: mrpt::maps::CPointsMap::boundingBox() const --> struct mrpt::math::TBoundingBox_<float>
changeCoordinatesReference(...)
changeCoordinatesReference(*args, **kwargs)
Overloaded function.
 
1. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CPointsMap, b: mrpt.pymrpt.mrpt.poses.CPose2D) -> None
 
Replace each point 
 by 
 (pose
 compounding operator).
 
C++: mrpt::maps::CPointsMap::changeCoordinatesReference(const class mrpt::poses::CPose2D &) --> void
 
2. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CPointsMap, b: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
Replace each point 
 by 
 (pose
 compounding operator).
 
C++: mrpt::maps::CPointsMap::changeCoordinatesReference(const class mrpt::poses::CPose3D &) --> void
 
3. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CPointsMap, other: mrpt.pymrpt.mrpt.maps.CPointsMap, b: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
Copy all the points from "other" map to "this", replacing each point 
 
 
 by 
 (pose compounding operator).
 
C++: mrpt::maps::CPointsMap::changeCoordinatesReference(const class mrpt::maps::CPointsMap &, const class mrpt::poses::CPose3D &) --> void
clipOutOfRange(...)
clipOutOfRange(self: mrpt.pymrpt.mrpt.maps.CPointsMap, point: mrpt::math::TPoint2D_<double>, maxRange: float) -> None
 
Delete points which are more far than "maxRange" away from the given
 "point".
 
C++: mrpt::maps::CPointsMap::clipOutOfRange(const struct mrpt::math::TPoint2D_<double> &, float) --> void
clipOutOfRangeInZ(...)
clipOutOfRangeInZ(self: mrpt.pymrpt.mrpt.maps.CPointsMap, zMin: float, zMax: float) -> None
 
Delete points out of the given "z" axis range have been removed.
 
C++: mrpt::maps::CPointsMap::clipOutOfRangeInZ(float, float) --> void
compute3DDistanceToMesh(...)
compute3DDistanceToMesh(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap2: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, maxDistForCorrespondence: float, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, correspondencesRatio: float) -> None
 
Computes the matchings between this and another 3D points map.
           This method matches each point in the other map with the centroid of the
         3 closest points in 3D
           from this map (if the distance is below a defined threshold).
 
 
                                          [IN] The other map to compute the
         matching with.
 
 
                                  [IN] The pose of the other map as seen
         from "this".
 
 
   [IN] Maximum 2D linear distance
         between two points to be matched.
 
 
                          [OUT] The detected matchings pairs.
 
 
                  [OUT] The ratio [0,1] of points in
         otherMap with at least one correspondence.
 
 
 determineMatching3D
 
C++: mrpt::maps::CPointsMap::compute3DDistanceToMesh(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, float, class mrpt::tfest::TMatchingPairListTempl<float> &, float &) --> void
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
C++: mrpt::maps::CPointsMap::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
C++: mrpt::maps::CPointsMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
C++: mrpt::maps::CPointsMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
empty(...)
empty(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
STL-like method to check whether the map is empty: 
 
C++: mrpt::maps::CPointsMap::empty() const --> bool
enableFilterByHeight(...)
enableFilterByHeight(*args, **kwargs)
Overloaded function.
 
1. enableFilterByHeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
2. enableFilterByHeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap, enable: bool) -> None
 
Enable/disable the filter-by-height functionality 
 
 setHeightFilterLevels 
 
 Default upon construction is disabled. 
 
C++: mrpt::maps::CPointsMap::enableFilterByHeight(bool) --> void
extractCylinder(...)
extractCylinder(self: mrpt.pymrpt.mrpt.maps.CPointsMap, center: mrpt::math::TPoint2D_<double>, radius: float, zmin: float, zmax: float, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
Extracts the points in the map within a cylinder in 3D defined the
 provided radius and zmin/zmax values.
 
C++: mrpt::maps::CPointsMap::extractCylinder(const struct mrpt::math::TPoint2D_<double> &, const double, const double, const double, class mrpt::maps::CPointsMap *) --> void
extractPoints(...)
extractPoints(*args, **kwargs)
Overloaded function.
 
1. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
2. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap, R: float) -> None
 
3. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap, R: float, G: float) -> None
 
4. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap, R: float, G: float, B: float) -> None
 
Extracts the points in the map within the area defined by two corners.
  The points are coloured according the R,G,B input data.
 
C++: mrpt::maps::CPointsMap::extractPoints(const struct mrpt::math::TPoint3D_<double> &, const struct mrpt::math::TPoint3D_<double> &, class mrpt::maps::CPointsMap *, double, double, double) --> void
getHeightFilterLevels(...)
getHeightFilterLevels(self: mrpt.pymrpt.mrpt.maps.CPointsMap, _z_min: float, _z_max: float) -> None
 
Get the min/max Z levels for points to be actually inserted in the map
 
 
 enableFilterByHeight, setHeightFilterLevels 
 
C++: mrpt::maps::CPointsMap::getHeightFilterLevels(double &, double &) const --> void
getLargestDistanceFromOrigin(...)
getLargestDistanceFromOrigin(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> float
 
This method returns the largest distance from the origin to any of the
 points, such as a sphere centered at the origin with this radius cover
 ALL the points in the map (the results are buffered, such as, if the map
 is not modified, the second call will be much faster than the first one).
 
C++: mrpt::maps::CPointsMap::getLargestDistanceFromOrigin() const --> float
getLargestDistanceFromOriginNoRecompute(...)
getLargestDistanceFromOriginNoRecompute(self: mrpt.pymrpt.mrpt.maps.CPointsMap, output_is_valid: bool) -> float
 
Like  but returns in 
 = false if the distance was not already computed, skipping its
 computation then, unlike getLargestDistanceFromOrigin() 
 
C++: mrpt::maps::CPointsMap::getLargestDistanceFromOriginNoRecompute(bool &) const --> float
getPoint(...)
getPoint(*args, **kwargs)
Overloaded function.
 
1. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Access to a given point from map, as a 2D point. First index is 0.
 
 
 Throws std::exception on index out of bound.
 
 
 setPoint, getPointFast
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, float &, float &, float &) const --> void
 
2. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, float &, float &) const --> void
 
3. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, double &, double &, double &) const --> void
 
4. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, double &, double &) const --> void
 
5. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint2D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, struct mrpt::math::TPoint2D_<double> &) const --> void
 
6. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint3D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, struct mrpt::math::TPoint3D_<double> &) const --> void
getPointFast(...)
getPointFast(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Just like  but without checking out-of-bound index and
 without returning the point weight, just XYZ.
 
C++: mrpt::maps::CPointsMap::getPointFast(size_t, float &, float &, float &) const --> void
getPointWeight(...)
getPointWeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int) -> int
 
Gets the point weight, which is ignored in all classes (defaults to 1)
 but in those which actually store that field (Note: No checks are done
 for out-of-bounds index).  
 
 setPointWeight
 
C++: mrpt::maps::CPointsMap::getPointWeight(size_t) const --> unsigned int
insertAnotherMap(...)
insertAnotherMap(*args, **kwargs)
Overloaded function.
 
1. insertAnotherMap(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CPointsMap, otherPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
2. insertAnotherMap(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CPointsMap, otherPose: mrpt.pymrpt.mrpt.poses.CPose3D, filterOutPointsAtZero: bool) -> None
 
Insert the contents of another map into this one with some geometric
 transformation, without fusing close points.
 
 
 The other map whose points are to be inserted into this
 one.
 
 
 The pose of the other map in the coordinates of THIS map
 
 
 If true, points at (0,0,0) (in the frame of
 reference of `otherMap`) will be assumed to be invalid and will not be
 copied.
 
 
 fuseWith, addFrom
 
C++: mrpt::maps::CPointsMap::insertAnotherMap(const class mrpt::maps::CPointsMap *, const class mrpt::poses::CPose3D &, const bool) --> void
insertPoint(...)
insertPoint(*args, **kwargs)
Overloaded function.
 
1. insertPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x: float, y: float) -> None
 
2. insertPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x: float, y: float, z: float) -> None
 
Provides a way to insert (append) individual points into the map: the
 missing fields of child
 classes (color, weight, etc) are left to their default values
 
C++: mrpt::maps::CPointsMap::insertPoint(float, float, float) --> void
 
3. insertPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, p: mrpt::math::TPoint3D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::insertPoint(const struct mrpt::math::TPoint3D_<double> &) --> void
internal_computeObservationLikelihood(...)
internal_computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CPointsMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
@} 
 
C++: mrpt::maps::CPointsMap::internal_computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
internal_computeObservationLikelihoodPointCloud3D(...)
internal_computeObservationLikelihoodPointCloud3D(self: mrpt.pymrpt.mrpt.maps.CPointsMap, pc_in_map: mrpt.pymrpt.mrpt.poses.CPose3D, xs: float, ys: float, zs: float, num_pts: int) -> float
 
C++: mrpt::maps::CPointsMap::internal_computeObservationLikelihoodPointCloud3D(const class mrpt::poses::CPose3D &, const float *, const float *, const float *, const unsigned long) const --> double
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
Returns true if the map is empty/no observation has been inserted.
 
C++: mrpt::maps::CPointsMap::isEmpty() const --> bool
isFilterByHeightEnabled(...)
isFilterByHeightEnabled(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
Return whether filter-by-height is enabled 
 enableFilterByHeight 
 
C++: mrpt::maps::CPointsMap::isFilterByHeightEnabled() const --> bool
kdtree_distance(...)
kdtree_distance(self: mrpt.pymrpt.mrpt.maps.CPointsMap, p1: float, idx_p2: int, size: int) -> float
 
Returns the distance between the vector "p1[0:size-1]" and the data
 point with index "idx_p2" stored in the class:
 
C++: mrpt::maps::CPointsMap::kdtree_distance(const float *, size_t, size_t) const --> float
kdtree_get_point_count(...)
kdtree_get_point_count(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> int
 
Must return the number of data points
 
C++: mrpt::maps::CPointsMap::kdtree_get_point_count() const --> size_t
kdtree_get_pt(...)
kdtree_get_pt(self: mrpt.pymrpt.mrpt.maps.CPointsMap, idx: int, dim: int) -> float
 
Returns the dim'th component of the idx'th point in the class:
 
C++: mrpt::maps::CPointsMap::kdtree_get_pt(size_t, int) const --> float
load2D_from_text_file(...)
load2D_from_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Load from a text file. Each line should contain an "X Y" coordinate
 pair, separated by whitespaces.
   Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::load2D_from_text_file(const std::string &) --> bool
load2Dor3D_from_text_file(...)
load2Dor3D_from_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str, is_3D: bool) -> bool
 
2D or 3D generic implementation of  and
 load3D_from_text_file 
 
C++: mrpt::maps::CPointsMap::load2Dor3D_from_text_file(const std::string &, const bool) --> bool
load3D_from_text_file(...)
load3D_from_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Load from a text file. Each line should contain an "X Y Z" coordinate
 tuple, separated by whitespaces.
   Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::load3D_from_text_file(const std::string &) --> bool
mark_as_modified(...)
mark_as_modified(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
Users normally don't need to call this. Called by this class or children
 classes, set m_largestDistanceFromOriginIsUpdated=false, invalidates the
 kd-tree cache, and such. 
 
C++: mrpt::maps::CPointsMap::mark_as_modified() const --> void
save2D_to_text_file(...)
save2D_to_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Save to a text file. Each line will contain "X Y" point coordinates.
                Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::save2D_to_text_file(const std::string &) const --> bool
save3D_to_text_file(...)
save3D_to_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Save to a text file. Each line will contain "X Y Z" point coordinates.
     Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::save3D_to_text_file(const std::string &) const --> bool
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.CPointsMap, filNamePrefix: str) -> None
 
This virtual method saves the map to a file "filNamePrefix"+<
 some_file_extension >, as an image or in any other applicable way (Notice
 that other methods to save the map may be implemented in classes
 implementing this virtual interface) 
 
C++: mrpt::maps::CPointsMap::saveMetricMapRepresentationToFile(const std::string &) const --> void
setHeightFilterLevels(...)
setHeightFilterLevels(self: mrpt.pymrpt.mrpt.maps.CPointsMap, _z_min: float, _z_max: float) -> None
 
Set the min/max Z levels for points to be actually inserted in the map
 (only if  was called before). 
 
C++: mrpt::maps::CPointsMap::setHeightFilterLevels(const double, const double) --> void
setPoint(...)
setPoint(*args, **kwargs)
Overloaded function.
 
1. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Changes a given point from map, with Z defaulting to 0 if not provided.
 
 
 Throws std::exception on index out of bound.
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, float, float, float) --> void
 
2. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint2D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, const struct mrpt::math::TPoint2D_<double> &) --> void
 
3. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint3D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, const struct mrpt::math::TPoint3D_<double> &) --> void
 
4. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float) -> None
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, float, float) --> void
setPointFast(...)
setPointFast(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Changes the coordinates of the given point (0-based index), *without*
 checking for out-of-bounds and *without* calling mark_as_modified().
 Also, color, intensity, or other data is left unchanged. 
 
 setPoint 
 
C++: mrpt::maps::CPointsMap::setPointFast(size_t, float, float, float) --> void
setPointWeight(...)
setPointWeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, w: int) -> None
 
Sets the point weight, which is ignored in all classes but those which
 actually store that field (Note: No checks are done for out-of-bounds
 index). 
 
 getPointWeight
 
C++: mrpt::maps::CPointsMap::setPointWeight(size_t, unsigned long) --> void
size(...)
size(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> int
 
Returns the number of stored points in the map.
 
C++: mrpt::maps::CPointsMap::size() const --> size_t
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map.
 
C++: mrpt::maps::CPointsMap::squareDistanceToClosestCorrespondence(float, float) const --> float
squareDistanceToClosestCorrespondenceT(...)
squareDistanceToClosestCorrespondenceT(self: mrpt.pymrpt.mrpt.maps.CPointsMap, p0: mrpt::math::TPoint2D_<double>) -> float
 
C++: mrpt::maps::CPointsMap::squareDistanceToClosestCorrespondenceT(const struct mrpt::math::TPoint2D_<double> &) const --> float

Data descriptors inherited from CPointsMap:
insertionOptions
likelihoodOptions
renderOptions

Data and other attributes inherited from CPointsMap:
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.CPointsMap.TInsertionOptions'>
With this struct options are provided to the observation insertion
process.
 
 
CObservation::insertIntoPointsMap
TLikelihoodOptions = <class 'mrpt.pymrpt.mrpt.maps.CPointsMap.TLikelihoodOptions'>
Options used when evaluating "computeObservationLikelihood" in the
derived classes.
 
 
CObservation::computeObservationLikelihood
TRenderOptions = <class 'mrpt.pymrpt.mrpt.maps.CPointsMap.TRenderOptions'>
Rendering options, used in getAs3DObject()

Methods inherited from CMetricMap:
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
Erase all the contents of the map 
 
C++: mrpt::maps::CMetricMap::clear() --> void
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void

Data descriptors inherited from CMetricMap:
genericMapParams

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Methods inherited from mrpt.pymrpt.mrpt.opengl.PLY_Importer:
getLoadPLYErrorString(...)
getLoadPLYErrorString(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer) -> str
 
Return a description of the error if loadFromPlyFile() returned false,
 or an empty string if the file was loaded without problems. 
 
C++: mrpt::opengl::PLY_Importer::getLoadPLYErrorString() const --> std::string
loadFromPlyFile(...)
loadFromPlyFile(*args, **kwargs)
Overloaded function.
 
1. loadFromPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer, filename: str) -> bool
 
2. loadFromPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer, filename: str, file_comments: List[str]) -> bool
 
3. loadFromPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer, filename: str, file_comments: List[str], file_obj_info: List[str]) -> bool
 
Loads from a PLY file.
 
 
 The filename to open. It can be either in binary or
 text format.
 
 
 If provided (!=nullptr) the list of comment
 strings stored in the file will be returned.
 
 
 If provided (!=nullptr) the list of "object
 info" strings stored in the file will be returned.
 
 
 false on any error in the file format or reading it. To obtain
 more details on the error you can call getLoadPLYErrorString()
 
C++: mrpt::opengl::PLY_Importer::loadFromPlyFile(const std::string &, class std::vector<std::string > *, class std::vector<std::string > *) --> bool

Methods inherited from mrpt.pymrpt.mrpt.opengl.PLY_Exporter:
getSavePLYErrorString(...)
getSavePLYErrorString(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter) -> str
 
Return a description of the error if loadFromPlyFile() returned false,
 or an empty string if the file was loaded without problems. 
 
C++: mrpt::opengl::PLY_Exporter::getSavePLYErrorString() const --> std::string
saveToPlyFile(...)
saveToPlyFile(*args, **kwargs)
Overloaded function.
 
1. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str) -> bool
 
2. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str, save_in_binary: bool) -> bool
 
3. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str, save_in_binary: bool, file_comments: List[str]) -> bool
 
4. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str, save_in_binary: bool, file_comments: List[str], file_obj_info: List[str]) -> bool
 
Saves to a PLY file.
 
 
 The filename to be saved.
 
 
 If provided (!=nullptr) the list of comment
 strings stored in the file will be returned.
 
 
 If provided (!=nullptr) the list of "object
 info" strings stored in the file will be returned.
 
 
 false on any error writing the file. To obtain more details on
 the error you can call getSavePLYErrorString()
 
C++: mrpt::opengl::PLY_Exporter::saveToPlyFile(const std::string &, bool, const class std::vector<std::string > &, const class std::vector<std::string > &) const --> bool

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CRBPFParticleData(mrpt.pymrpt.mrpt.serialization.CSerializable)
    Auxiliary class used in mrpt::maps::CMultiMetricMapPDF
 
 
Method resolution order:
CRBPFParticleData
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CRBPFParticleData) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CRBPFParticleData::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CRBPFParticleData) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CRBPFParticleData, mapsInit: mrpt.pymrpt.mrpt.maps.TSetOfMetricMapInitializers) -> None
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CRBPFParticleData, arg0: mrpt.pymrpt.mrpt.maps.CRBPFParticleData) -> None
 
4. __init__(self: mrpt.pymrpt.mrpt.maps.CRBPFParticleData, arg0: mrpt.pymrpt.mrpt.maps.CRBPFParticleData) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CRBPFParticleData, : mrpt.pymrpt.mrpt.maps.CRBPFParticleData) -> mrpt.pymrpt.mrpt.maps.CRBPFParticleData
 
C++: mrpt::maps::CRBPFParticleData::operator=(const class mrpt::maps::CRBPFParticleData &) --> class mrpt::maps::CRBPFParticleData &
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CRBPFParticleData) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CRBPFParticleData::clone() const --> class mrpt::rtti::CObject *

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CRBPFParticleData::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CRBPFParticleData::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
mapTillNow
robotPath

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CRandomFieldGridMap2D(CMetricMap, mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t)
    CRandomFieldGridMap2D represents a 2D grid map where each cell is associated
one real-valued property which is estimated by this map, either
   as a simple value or as a probility distribution (for each cell).
 
  There are a number of methods available to build the MRF grid-map,
depending on the value of
    `TMapRepresentation maptype` passed in the constructor.
 
  The following papers describe the mapping alternatives implemented here:
                - `mrKernelDM`: A Gaussian kernel-based method. See:
                        - "Building gas concentration gridmaps with a mobile robot",
Lilienthal,
A. and Duckett, T., Robotics and Autonomous Systems, v.48, 2004.
                - `mrKernelDMV`: A kernel-based method. See:
                        - "A Statistical Approach to Gas Distribution Modelling with Mobile
Robots--The Kernel DM+ V Algorithm", Lilienthal, A.J. and Reggente, M. and
Trincavelli, M. and Blanco, J.L. and Gonzalez, J., IROS 2009.
                - `mrKalmanFilter`: A "brute-force" approach to estimate the entire map
with a dense (linear) Kalman filter. Will be very slow for mid or large maps.
It's provided just for comparison purposes, not useful in practice.
                - `mrKalmanApproximate`: A compressed/sparse Kalman filter approach.
See:
                        - "A Kalman Filter Based Approach to Probabilistic Gas Distribution
Mapping", JL Blanco, JG Monroy, J Gonzalez-Jimenez, A Lilienthal, 28th
Symposium On Applied Computing (SAC), 2013.
                - `mrGMRF_SD`: A Gaussian Markov Random Field (GMRF) estimator, with
these
constraints:
                        - `mrGMRF_SD`: Each cell only connected to its 4 immediate neighbors
(Up,
down, left, right).
                        - (Removed in MRPT 1.5.0: `mrGMRF_G`: Each cell connected to a
square
area
of neighbors cells)
                        - See papers:
                                - "Time-variant gas distribution mapping with obstacle
information",
Monroy, J. G., Blanco, J. L., & Gonzalez-Jimenez, J. Autonomous Robots,
40(1), 1-16, 2016.
 
  Note that this class is virtual, since derived classes still have to
implement:
                - mrpt::maps::CMetricMap::internal_computeObservationLikelihood()
                - mrpt::maps::CMetricMap::internal_insertObservation()
                - Serialization methods: writeToStream() and readFromStream()
 
 [GMRF only] A custom connectivity pattern between cells can be defined by
calling setCellsConnectivity().
 
 
 mrpt::maps::CGasConcentrationGridMap2D,
mrpt::maps::CWirelessPowerGridMap2D, mrpt::maps::CMetricMap,
mrpt::containers::CDynamicGrid, The application icp-slam,
mrpt::maps::CMultiMetricMap
 
 
Method resolution order:
CRandomFieldGridMap2D
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CRandomFieldGridMap2D::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(self, /, *args, **kwargs)
Initialize self.  See help(type(self)) for accurate signature.
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> str
 
Returns a short description of the map. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::asString() const --> std::string
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, : mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D
 
C++: mrpt::maps::CRandomFieldGridMap2D::operator=(const class mrpt::maps::CRandomFieldGridMap2D &) --> class mrpt::maps::CRandomFieldGridMap2D &
cell2float(...)
cell2float(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, c: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> float
 
C++: mrpt::maps::CRandomFieldGridMap2D::cell2float(const struct mrpt::maps::TRandomFieldCell &) const --> float
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> None
 
Calls the base CMetricMap::clear
 Declared here to avoid ambiguity between the two clear() in both base
 classes.
 
C++: mrpt::maps::CRandomFieldGridMap2D::clear() --> void
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
See docs in base class: in this class this always returns 0 
 
C++: mrpt::maps::CRandomFieldGridMap2D::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
enableProfiler(...)
enableProfiler(*args, **kwargs)
Overloaded function.
 
1. enableProfiler(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> None
 
2. enableProfiler(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, enable: bool) -> None
 
C++: mrpt::maps::CRandomFieldGridMap2D::enableProfiler(bool) --> void
enableVerbose(...)
enableVerbose(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, enable_verbose: bool) -> None
 
C++: mrpt::maps::CRandomFieldGridMap2D::enableVerbose(bool) --> void
getAs3DObject(...)
getAs3DObject(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, meanObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects, varObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
Returns two 3D objects representing the mean and variance maps 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getAs3DObject(class mrpt::opengl::CSetOfObjects &, class mrpt::opengl::CSetOfObjects &) const --> void
getAsBitmapFile(...)
getAsBitmapFile(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_img: mrpt.pymrpt.mrpt.img.CImage) -> None
 
Returns an image just as described in  
 
C++: mrpt::maps::CRandomFieldGridMap2D::getAsBitmapFile(class mrpt::img::CImage &) const --> void
getAsMatrix(...)
getAsMatrix(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_mat: mrpt.pymrpt.mrpt.math.CMatrixDynamic_double_t) -> None
 
Like saveAsBitmapFile(), but returns the data in matrix form (first row
 in the matrix is the upper (y_max) part of the map) 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getAsMatrix(class mrpt::math::CMatrixDynamic<double> &) const --> void
getMapType(...)
getMapType(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation
 
Return the type of the random-field grid map, according to parameters
 passed on construction. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getMapType() --> enum mrpt::maps::CRandomFieldGridMap2D::TMapRepresentation
getMeanAndCov(...)
getMeanAndCov(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_means: mrpt::math::CVectorDynamic<double>, out_cov: mrpt.pymrpt.mrpt.math.CMatrixDynamic_double_t) -> None
 
Return the mean and covariance vector of the full Kalman filter estimate
 (works for all KF-based methods). 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getMeanAndCov(class mrpt::math::CVectorDynamic<double> &, class mrpt::math::CMatrixDynamic<double> &) const --> void
getMeanAndSTD(...)
getMeanAndSTD(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_means: mrpt::math::CVectorDynamic<double>, out_STD: mrpt::math::CVectorDynamic<double>) -> None
 
Return the mean and STD vectors of the full Kalman filter estimate
 (works for all KF-based methods). 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getMeanAndSTD(class mrpt::math::CVectorDynamic<double> &, class mrpt::math::CVectorDynamic<double> &) const --> void
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, outObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
Returns a 3D object representing the map (mean) 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
insertIndividualReading(...)
insertIndividualReading(*args, **kwargs)
Overloaded function.
 
1. insertIndividualReading(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, sensorReading: float, point: mrpt::math::TPoint2D_<double>) -> None
 
2. insertIndividualReading(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, sensorReading: float, point: mrpt::math::TPoint2D_<double>, update_map: bool) -> None
 
3. insertIndividualReading(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, sensorReading: float, point: mrpt::math::TPoint2D_<double>, update_map: bool, time_invariant: bool) -> None
 
4. insertIndividualReading(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, sensorReading: float, point: mrpt::math::TPoint2D_<double>, update_map: bool, time_invariant: bool, reading_stddev: float) -> None
 
Direct update of the map with a reading in a given position of the map,
 using
  the appropriate method according to mapType passed in the constructor.
 
 This is a direct way to update the map, an alternative to the generic
 insertObservation() method which works with mrpt::obs::CObservation
 objects.
 
C++: mrpt::maps::CRandomFieldGridMap2D::insertIndividualReading(const double, const struct mrpt::math::TPoint2D_<double> &, const bool, const bool, const double) --> void
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> bool
 
Returns true if the map is empty/no observation has been inserted (in
 this class it always return false,
 unless redefined otherwise in base classes)
 
C++: mrpt::maps::CRandomFieldGridMap2D::isEmpty() const --> bool
isEnabledVerbose(...)
isEnabledVerbose(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> bool
 
C++: mrpt::maps::CRandomFieldGridMap2D::isEnabledVerbose() const --> bool
isProfilerEnabled(...)
isProfilerEnabled(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> bool
 
C++: mrpt::maps::CRandomFieldGridMap2D::isProfilerEnabled() const --> bool
predictMeasurement(...)
predictMeasurement(*args, **kwargs)
Overloaded function.
 
1. predictMeasurement(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, x: float, y: float, out_predict_response: float, out_predict_response_variance: float, do_sensor_normalization: bool) -> None
 
2. predictMeasurement(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, x: float, y: float, out_predict_response: float, out_predict_response_variance: float, do_sensor_normalization: bool, interp_method: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TGridInterpolationMethod) -> None
 
Returns the prediction of the measurement at some (x,y) coordinates, and
 its certainty (in the form of the expected variance).  
 
C++: mrpt::maps::CRandomFieldGridMap2D::predictMeasurement(const double, const double, double &, double &, bool, const enum mrpt::maps::CRandomFieldGridMap2D::TGridInterpolationMethod) --> void
resize(...)
resize(*args, **kwargs)
Overloaded function.
 
1. resize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, new_x_min: float, new_x_max: float, new_y_min: float, new_y_max: float, defaultValueNewCells: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> None
 
2. resize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, new_x_min: float, new_x_max: float, new_y_min: float, new_y_max: float, defaultValueNewCells: mrpt.pymrpt.mrpt.maps.TRandomFieldCell, additionalMarginMeters: float) -> None
 
Changes the size of the grid, maintaining previous contents. 
 setSize
 
C++: mrpt::maps::CRandomFieldGridMap2D::resize(double, double, double, double, const struct mrpt::maps::TRandomFieldCell &, double) --> void
saveAsBitmapFile(...)
saveAsBitmapFile(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, filName: str) -> None
 
Save the current map as a graphical file (BMP,PNG,...).
 The file format will be derived from the file extension (see
CImage::saveToFile )
  It depends on the map representation model:
                mrAchim: Each pixel is the ratio 
 
 
                mrKalmanFilter: Each pixel is the mean value of the Gaussian that
represents each cell.
 
 
 
         
 
C++: mrpt::maps::CRandomFieldGridMap2D::saveAsBitmapFile(const std::string &) const --> void
saveAsMatlab3DGraph(...)
saveAsMatlab3DGraph(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, filName: str) -> None
 
Save a matlab ".m" file which represents as 3D surfaces the mean and a
 given confidence level for the concentration of each cell.
  This method can only be called in a KF map model. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::saveAsMatlab3DGraph(const std::string &) const --> void
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, filNamePrefix: str) -> None
 
The implementation in this class just calls all the corresponding method
 of the contained metric maps 
 
C++: mrpt::maps::CRandomFieldGridMap2D::saveMetricMapRepresentationToFile(const std::string &) const --> void
setCellsConnectivity(...)
setCellsConnectivity(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, new_connectivity_descriptor: mrpt::maps::CRandomFieldGridMap2D::ConnectivityDescriptor) -> None
 
Sets a custom object to define the connectivity between cells. Must call
 clear() or setSize() afterwards for the changes to take place. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::setCellsConnectivity(const class std::shared_ptr<struct mrpt::maps::CRandomFieldGridMap2D::ConnectivityDescriptor> &) --> void
setMeanAndSTD(...)
setMeanAndSTD(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_means: mrpt::math::CVectorDynamic<double>, out_STD: mrpt::math::CVectorDynamic<double>) -> None
 
Load the mean and STD vectors of the full Kalman filter estimate (works
 for all KF-based methods). 
 
C++: mrpt::maps::CRandomFieldGridMap2D::setMeanAndSTD(class mrpt::math::CVectorDynamic<double> &, class mrpt::math::CVectorDynamic<double> &) --> void
setSize(...)
setSize(*args, **kwargs)
Overloaded function.
 
1. setSize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float) -> None
 
2. setSize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float, fill_value: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> None
 
Changes the size of the grid, erasing previous contents.
  
 
 Optional user-supplied object that
 will visit all grid cells to define their connectivity with neighbors and
 the strength of existing edges. If present, it overrides all options in
 insertionOptions
 
 
 resize
 
C++: mrpt::maps::CRandomFieldGridMap2D::setSize(const double, const double, const double, const double, const double, const struct mrpt::maps::TRandomFieldCell *) --> void
updateMapEstimation(...)
updateMapEstimation(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> None
 
Run the method-specific procedure required to ensure that the mean &
 variances are up-to-date with all inserted observations. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::updateMapEstimation() --> void

Static methods defined here:
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CRandomFieldGridMap2D::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data and other attributes defined here:
ConnectivityDescriptor = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.ConnectivityDescriptor'>
Base class for user-supplied objects capable of describing cells
connectivity, used to build prior factors of the MRF graph. 
 
 
setCellsConnectivity()
TGridInterpolationMethod = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TGridInterpolationMethod'>
TInsertionOptionsCommon = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TInsertionOptionsCommon'>
Parameters common to any derived class.
 Derived classes should derive a new struct from this one, plus "public
CLoadableOptions",
 and call the internal_* methods where appropiate to deal with the
variables declared here.
 Derived classes instantions of their "TInsertionOptions" MUST set the
pointer "m_insertOptions_common" upon construction.
TMapRepresentation = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation'>
gimBilinear = <TGridInterpolationMethod.gimBilinear: 1>
gimNearest = <TGridInterpolationMethod.gimNearest: 0>
mrAchim = <TMapRepresentation.mrKernelDM: 0>
mrGMRF_SD = <TMapRepresentation.mrGMRF_SD: 4>
mrKalmanApproximate = <TMapRepresentation.mrKalmanApproximate: 2>
mrKalmanFilter = <TMapRepresentation.mrKalmanFilter: 1>
mrKernelDM = <TMapRepresentation.mrKernelDM: 0>
mrKernelDMV = <TMapRepresentation.mrKernelDMV: 3>

Methods inherited from CMetricMap:
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matching between this and another 2D point map, which
includes finding:
   - The set of points pairs in each map
   - The mean squared distance between corresponding pairs.
 
   The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
   This method is the most time critical one into ICP-like algorithms.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matchings between this and another 3D points map - method
used in 3D-ICP.
  This method finds the set of point pairs in each map.
 
  The method is the most time critical one into ICP-like algorithms.
 
  The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.CMetricMap, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map. 
 
C++: mrpt::maps::CMetricMap::squareDistanceToClosestCorrespondence(float, float) const --> float

Data descriptors inherited from CMetricMap:
genericMapParams

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
clone(...)
clone(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Returns a deep copy (clone) of the object, indepently of its class. 
 
C++: mrpt::rtti::CObject::clone() const --> class mrpt::rtti::CObject *
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Methods inherited from mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t:
cellByIndex(...)
cellByIndex(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, cx: int, cy: int) -> mrpt::maps::TRandomFieldCell
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::cellByIndex(unsigned int, unsigned int) --> struct mrpt::maps::TRandomFieldCell *
cellByPos(...)
cellByPos(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, x: float, y: float) -> mrpt::maps::TRandomFieldCell
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::cellByPos(double, double) --> struct mrpt::maps::TRandomFieldCell *
fill(...)
fill(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, value: mrpt::maps::TRandomFieldCell) -> None
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::fill(const struct mrpt::maps::TRandomFieldCell &) --> void
getResolution(...)
getResolution(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getResolution() const --> double
getSizeX(...)
getSizeX(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getSizeX() const --> size_t
getSizeY(...)
getSizeY(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getSizeY() const --> size_t
getXMax(...)
getXMax(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getXMax() const --> double
getXMin(...)
getXMin(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getXMin() const --> double
getYMax(...)
getYMax(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getYMax() const --> double
getYMin(...)
getYMin(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getYMin() const --> double
idx2cxcy(...)
idx2cxcy(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, idx: int, cx: int, cy: int) -> None
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::idx2cxcy(int, int &, int &) const --> void
idx2x(...)
idx2x(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, cx: int) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::idx2x(int) const --> double
idx2y(...)
idx2y(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, cy: int) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::idx2y(int) const --> double
saveToTextFile(...)
saveToTextFile(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, fileName: str) -> bool
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::saveToTextFile(const std::string &) const --> bool
x2idx(...)
x2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, x: float) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::x2idx(double) const --> int
xy2idx(...)
xy2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, x: float, y: float) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::xy2idx(double, double) const --> int
y2idx(...)
y2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, y: float) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::y2idx(double) const --> int

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CRandomFieldGridMap3D(mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t, mrpt.pymrpt.mrpt.serialization.CSerializable)
    CRandomFieldGridMap3D represents a 3D regular grid where each voxel is
associated one real-valued property which is to be estimated by this class.
 
 This class implements a Gaussian Markov Random Field (GMRF) estimator, with
each voxel being connected to its
  6 immediate neighbors (Up, down, left, right, front, back).
 - See papers:
   - "Time-variant gas distribution mapping with obstacle information",
Monroy, J. G., Blanco, J. L., & Gonzalez-Jimenez, J. Autonomous Robots,
40(1), 1-16, 2016.
 
 Note that this class does not derive from mrpt::maps::CMetricMap since the
estimated values do not have sensor-especific semantics,
 i.e. the grid can be used to estimate temperature, gas concentration, etc.
 
 Usage:
 - Define grid size with either constructor or via `setSize()`.
 - Initialize the map with `initialize()`. This resets the contents of the
map, so previously-added observations will be lost.
 - Add observations of 3D voxels with `insertIndividualReading()`
 
Custom connectivity patterns can be defined with setVoxelsConnectivity().
 
 
mrpt::maps::CRandomFieldGridMap3D
 
 
Method resolution order:
CRandomFieldGridMap3D
mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CRandomFieldGridMap3D::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D) -> None
 
doc
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, arg0: float) -> None
 
doc
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, arg0: float, arg1: float) -> None
 
doc
 
4. __init__(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, arg0: float, arg1: float, arg2: float) -> None
 
doc
 
5. __init__(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, arg0: float, arg1: float, arg2: float, arg3: float) -> None
 
doc
 
6. __init__(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, arg0: float, arg1: float, arg2: float, arg3: float, arg4: float) -> None
 
doc
 
7. __init__(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, arg0: float, arg1: float, arg2: float, arg3: float, arg4: float, arg5: float) -> None
 
doc
 
8. __init__(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, arg0: float, arg1: float, arg2: float, arg3: float, arg4: float, arg5: float, arg6: float) -> None
 
doc
 
9. __init__(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, x_min: float, x_max: float, y_min: float, y_max: float, z_min: float, z_max: float, voxel_size: float, call_initialize_now: bool) -> None
 
10. __init__(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D) -> None
 
11. __init__(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, : mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D) -> mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D
 
C++: mrpt::maps::CRandomFieldGridMap3D::operator=(const class mrpt::maps::CRandomFieldGridMap3D &) --> class mrpt::maps::CRandomFieldGridMap3D &
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D) -> None
 
Erases all added observations and start again with an empty gridmap. 
 
C++: mrpt::maps::CRandomFieldGridMap3D::clear() --> void
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CRandomFieldGridMap3D::clone() const --> class mrpt::rtti::CObject *
insertIndividualReading(...)
insertIndividualReading(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, sensorReading: float, sensorVariance: float, point: mrpt::math::TPoint3D_<double>, method: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D.TVoxelInterpolationMethod, update_map: bool) -> bool
 
Direct update of the map with a reading in a given position of the map.
 
 
 false if point is out of the grid extension.
 
C++: mrpt::maps::CRandomFieldGridMap3D::insertIndividualReading(const double, const double, const struct mrpt::math::TPoint3D_<double> &, const enum mrpt::maps::CRandomFieldGridMap3D::TVoxelInterpolationMethod, const bool) --> bool
resize(...)
resize(*args, **kwargs)
Overloaded function.
 
1. resize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, new_x_min: float, new_x_max: float, new_y_min: float, new_y_max: float, new_z_min: float, new_z_max: float, defaultValueNewvoxels: mrpt.pymrpt.mrpt.maps.TRandomFieldVoxel) -> None
 
2. resize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, new_x_min: float, new_x_max: float, new_y_min: float, new_y_max: float, new_z_min: float, new_z_max: float, defaultValueNewvoxels: mrpt.pymrpt.mrpt.maps.TRandomFieldVoxel, additionalMarginMeters: float) -> None
 
Changes the size of the grid, maintaining previous contents. 
 setSize
 
C++: mrpt::maps::CRandomFieldGridMap3D::resize(double, double, double, double, double, double, const struct mrpt::maps::TRandomFieldVoxel &, double) --> void
saveAsCSV(...)
saveAsCSV(*args, **kwargs)
Overloaded function.
 
1. saveAsCSV(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, filName_mean: str) -> bool
 
2. saveAsCSV(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, filName_mean: str, filName_stddev: str) -> bool
 
Save the current estimated mean values to a CSV file (compatible with
 Paraview) with fields `x y z mean_value`.
 Optionally, std deviations can be also saved to another file with fields
 `x y z stddev_value`, if `filName_stddev` is provided.
 
 
 false on error writing to file
 
C++: mrpt::maps::CRandomFieldGridMap3D::saveAsCSV(const std::string &, const std::string &) const --> bool
setSize(...)
setSize(*args, **kwargs)
Overloaded function.
 
1. setSize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, x_min: float, x_max: float, y_min: float, y_max: float, z_min: float, z_max: float, resolution_xy: float) -> None
 
2. setSize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, x_min: float, x_max: float, y_min: float, y_max: float, z_min: float, z_max: float, resolution_xy: float, resolution_z: float) -> None
 
3. setSize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, x_min: float, x_max: float, y_min: float, y_max: float, z_min: float, z_max: float, resolution_xy: float, resolution_z: float, fill_value: mrpt.pymrpt.mrpt.maps.TRandomFieldVoxel) -> None
 
Changes the size of the grid, erasing previous contents.If
 `resolution_z`<0, the same resolution will be used for all dimensions
 x,y,z as given in `resolution_xy` 
 
 resize.
 
C++: mrpt::maps::CRandomFieldGridMap3D::setSize(const double, const double, const double, const double, const double, const double, const double, const double, const struct mrpt::maps::TRandomFieldVoxel *) --> void
setVoxelsConnectivity(...)
setVoxelsConnectivity(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D, new_connectivity_descriptor: mrpt::maps::CRandomFieldGridMap3D::ConnectivityDescriptor) -> None
 
Sets a custom object to define the connectivity between voxels. Must
 call clear() or setSize() afterwards for the changes to take place. 
 
C++: mrpt::maps::CRandomFieldGridMap3D::setVoxelsConnectivity(const class std::shared_ptr<struct mrpt::maps::CRandomFieldGridMap3D::ConnectivityDescriptor> &) --> void
updateMapEstimation(...)
updateMapEstimation(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D) -> None
 
Run the method-specific procedure required to ensure that the mean &
 variances are up-to-date with all inserted observations, using parameters
 in insertionOptions 
 
C++: mrpt::maps::CRandomFieldGridMap3D::updateMapEstimation() --> void

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CRandomFieldGridMap3D::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CRandomFieldGridMap3D::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
insertionOptions

Data and other attributes defined here:
ConnectivityDescriptor = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D.ConnectivityDescriptor'>
Base class for user-supplied objects capable of describing voxels
connectivity, used to build prior factors of the MRF graph. 
 
 
setvoxelsConnectivity()
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D.TInsertionOptions'>
Parameters common to any derived class.
 Derived classes should derive a new struct from this one, plus
mrpt::config::CLoadableOptions,
 and call the internal_* methods where appropiate to deal with the
variables declared here.
 Derived classes instantions of their "TInsertionOptions" MUST set the
pointer "m_insertOptions_common" upon construction.
TVoxelInterpolationMethod = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap3D.TVoxelInterpolationMethod'>
gimBilinear = <TVoxelInterpolationMethod.gimBilinear: 1>
gimNearest = <TVoxelInterpolationMethod.gimNearest: 0>

Methods inherited from mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t:
cellAbsIndexFromCXCYCZ(...)
cellAbsIndexFromCXCYCZ(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t, cx: int, cy: int, cz: int) -> int
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::cellAbsIndexFromCXCYCZ(const int, const int, const int) const --> size_t
cellByIndex(...)
cellByIndex(*args, **kwargs)
Overloaded function.
 
1. cellByIndex(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t, cx: int, cy: int, cz: int) -> mrpt::maps::TRandomFieldVoxel
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::cellByIndex(unsigned int, unsigned int, unsigned int) --> struct mrpt::maps::TRandomFieldVoxel *
 
2. cellByIndex(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t, cidx: int) -> mrpt::maps::TRandomFieldVoxel
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::cellByIndex(size_t) --> struct mrpt::maps::TRandomFieldVoxel *
cellByPos(...)
cellByPos(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t, x: float, y: float, z: float) -> mrpt::maps::TRandomFieldVoxel
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::cellByPos(double, double, double) --> struct mrpt::maps::TRandomFieldVoxel *
cellRefByPos(...)
cellRefByPos(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t, x: float, y: float, z: float) -> mrpt::maps::TRandomFieldVoxel
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::cellRefByPos(double, double, double) --> struct mrpt::maps::TRandomFieldVoxel &
fill(...)
fill(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t, value: mrpt::maps::TRandomFieldVoxel) -> None
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::fill(const struct mrpt::maps::TRandomFieldVoxel &) --> void
getResolutionXY(...)
getResolutionXY(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t) -> float
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::getResolutionXY() const --> double
getResolutionZ(...)
getResolutionZ(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t) -> float
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::getResolutionZ() const --> double
getSizeX(...)
getSizeX(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t) -> int
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::getSizeX() const --> size_t
getSizeY(...)
getSizeY(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t) -> int
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::getSizeY() const --> size_t
getSizeZ(...)
getSizeZ(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t) -> int
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::getSizeZ() const --> size_t
getVoxelCount(...)
getVoxelCount(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t) -> int
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::getVoxelCount() const --> size_t
getXMax(...)
getXMax(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t) -> float
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::getXMax() const --> double
getXMin(...)
getXMin(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t) -> float
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::getXMin() const --> double
getYMax(...)
getYMax(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t) -> float
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::getYMax() const --> double
getYMin(...)
getYMin(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t) -> float
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::getYMin() const --> double
getZMax(...)
getZMax(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t) -> float
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::getZMax() const --> double
getZMin(...)
getZMin(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t) -> float
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::getZMin() const --> double
idx2x(...)
idx2x(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t, cx: int) -> float
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::idx2x(int) const --> double
idx2y(...)
idx2y(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t, cy: int) -> float
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::idx2y(int) const --> double
idx2z(...)
idx2z(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t, cz: int) -> float
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::idx2z(int) const --> double
isOutOfBounds(...)
isOutOfBounds(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t, cx: int, cy: int, cz: int) -> bool
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::isOutOfBounds(const int, const int, const int) const --> bool
x2idx(...)
x2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t, x: float) -> int
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::x2idx(double) const --> int
y2idx(...)
y2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t, y: float) -> int
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::y2idx(double) const --> int
z2idx(...)
z2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid3D_mrpt_maps_TRandomFieldVoxel_double_t, z: float) -> int
 
C++: mrpt::containers::CDynamicGrid3D<mrpt::maps::TRandomFieldVoxel>::z2idx(double) const --> int

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CReflectivityGridMap2D(CMetricMap, mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, CLogOddsGridMap2D_signed_char_t)
    A 2D grid map representing the reflectivity of the environment (for example,
measured with an IR proximity sensor).
 
  Important implemented features are:
                - Insertion of mrpt::obs::CObservationReflectivity observations.
                - Probability estimation of observations. See base class.
                - Rendering as 3D object: a 2D textured plane.
                - Automatic resizing of the map limits when inserting observations close
to
the border.
 
   Each cell contains the up-to-date average height from measured falling in
that cell. Algorithms that can be used:
                - mrSimpleAverage: Each cell only stores the current average value.
 
 
Method resolution order:
CReflectivityGridMap2D
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t
CLogOddsGridMap2D_signed_char_t
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CReflectivityGridMap2D::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D) -> None
 
doc
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D, arg0: float) -> None
 
doc
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D, arg0: float, arg1: float) -> None
 
doc
 
4. __init__(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D, arg0: float, arg1: float, arg2: float) -> None
 
doc
 
5. __init__(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D, arg0: float, arg1: float, arg2: float, arg3: float) -> None
 
doc
 
6. __init__(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float) -> None
 
7. __init__(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D) -> None
 
8. __init__(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D) -> None
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D) -> str
 
Returns a short description of the map. 
 
C++: mrpt::maps::CReflectivityGridMap2D::asString() const --> std::string
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D, : mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D) -> mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D
 
C++: mrpt::maps::CReflectivityGridMap2D::operator=(const class mrpt::maps::CReflectivityGridMap2D &) --> class mrpt::maps::CReflectivityGridMap2D &
cell2float(...)
cell2float(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D, c: int) -> float
 
C++: mrpt::maps::CReflectivityGridMap2D::cell2float(const signed char &) const --> float
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D) -> None
 
Calls the base CMetricMap::clear
 Declared here to avoid ambiguity between the two clear() in both base
 classes.
 
C++: mrpt::maps::CReflectivityGridMap2D::clear() --> void
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CReflectivityGridMap2D::clone() const --> class mrpt::rtti::CObject *
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
See docs in base class: in this class this always returns 0 
 
C++: mrpt::maps::CReflectivityGridMap2D::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
getAsImage(...)
getAsImage(*args, **kwargs)
Overloaded function.
 
1. getAsImage(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D, img: mrpt.pymrpt.mrpt.img.CImage) -> None
 
2. getAsImage(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D, img: mrpt.pymrpt.mrpt.img.CImage, verticalFlip: bool) -> None
 
3. getAsImage(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D, img: mrpt.pymrpt.mrpt.img.CImage, verticalFlip: bool, forceRGB: bool) -> None
 
Returns the grid as a 8-bit graylevel image, where each pixel is a cell
 (output image is RGB only if forceRGB is true) 
 
C++: mrpt::maps::CReflectivityGridMap2D::getAsImage(class mrpt::img::CImage &, bool, bool) const --> void
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D, outObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
C++: mrpt::maps::CReflectivityGridMap2D::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D) -> bool
 
Returns true if the map is empty/no observation has been inserted. 
 
C++: mrpt::maps::CReflectivityGridMap2D::isEmpty() const --> bool
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D, filNamePrefix: str) -> None
 
C++: mrpt::maps::CReflectivityGridMap2D::saveMetricMapRepresentationToFile(const std::string &) const --> void

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CReflectivityGridMap2D::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CReflectivityGridMap2D::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
insertionOptions

Data and other attributes defined here:
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D.TInsertionOptions'>
Parameters related with inserting observations into the map.
TMapDefinition = <class 'mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D.TMapDefinition'>
TMapDefinitionBase = <class 'mrpt.pymrpt.mrpt.maps.CReflectivityGridMap2D.TMapDefinitionBase'>

Methods inherited from CMetricMap:
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matching between this and another 2D point map, which
includes finding:
   - The set of points pairs in each map
   - The mean squared distance between corresponding pairs.
 
   The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
   This method is the most time critical one into ICP-like algorithms.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matchings between this and another 3D points map - method
used in 3D-ICP.
  This method finds the set of point pairs in each map.
 
  The method is the most time critical one into ICP-like algorithms.
 
  The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.CMetricMap, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map. 
 
C++: mrpt::maps::CMetricMap::squareDistanceToClosestCorrespondence(float, float) const --> float

Data descriptors inherited from CMetricMap:
genericMapParams

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Methods inherited from mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t:
cellByIndex(...)
cellByIndex(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, cx: int, cy: int) -> int
 
C++: mrpt::containers::CDynamicGrid<signed char>::cellByIndex(unsigned int, unsigned int) --> signed char *
cellByPos(...)
cellByPos(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, x: float, y: float) -> int
 
C++: mrpt::containers::CDynamicGrid<signed char>::cellByPos(double, double) --> signed char *
fill(...)
fill(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, value: int) -> None
 
C++: mrpt::containers::CDynamicGrid<signed char>::fill(const signed char &) --> void
getResolution(...)
getResolution(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t) -> float
 
C++: mrpt::containers::CDynamicGrid<signed char>::getResolution() const --> double
getSizeX(...)
getSizeX(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t) -> int
 
C++: mrpt::containers::CDynamicGrid<signed char>::getSizeX() const --> size_t
getSizeY(...)
getSizeY(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t) -> int
 
C++: mrpt::containers::CDynamicGrid<signed char>::getSizeY() const --> size_t
getXMax(...)
getXMax(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t) -> float
 
C++: mrpt::containers::CDynamicGrid<signed char>::getXMax() const --> double
getXMin(...)
getXMin(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t) -> float
 
C++: mrpt::containers::CDynamicGrid<signed char>::getXMin() const --> double
getYMax(...)
getYMax(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t) -> float
 
C++: mrpt::containers::CDynamicGrid<signed char>::getYMax() const --> double
getYMin(...)
getYMin(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t) -> float
 
C++: mrpt::containers::CDynamicGrid<signed char>::getYMin() const --> double
idx2cxcy(...)
idx2cxcy(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, idx: int, cx: int, cy: int) -> None
 
C++: mrpt::containers::CDynamicGrid<signed char>::idx2cxcy(int, int &, int &) const --> void
idx2x(...)
idx2x(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, cx: int) -> float
 
C++: mrpt::containers::CDynamicGrid<signed char>::idx2x(int) const --> double
idx2y(...)
idx2y(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, cy: int) -> float
 
C++: mrpt::containers::CDynamicGrid<signed char>::idx2y(int) const --> double
resize(...)
resize(*args, **kwargs)
Overloaded function.
 
1. resize(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, new_x_min: float, new_x_max: float, new_y_min: float, new_y_max: float, defaultValueNewCells: int) -> None
 
2. resize(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, new_x_min: float, new_x_max: float, new_y_min: float, new_y_max: float, defaultValueNewCells: int, additionalMarginMeters: float) -> None
 
C++: mrpt::containers::CDynamicGrid<signed char>::resize(double, double, double, double, const signed char &, double) --> void
saveToTextFile(...)
saveToTextFile(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, fileName: str) -> bool
 
C++: mrpt::containers::CDynamicGrid<signed char>::saveToTextFile(const std::string &) const --> bool
setSize(...)
setSize(*args, **kwargs)
Overloaded function.
 
1. setSize(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float) -> None
 
2. setSize(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float, fill_value: int) -> None
 
C++: mrpt::containers::CDynamicGrid<signed char>::setSize(const double, const double, const double, const double, const double, const signed char *) --> void
x2idx(...)
x2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, x: float) -> int
 
C++: mrpt::containers::CDynamicGrid<signed char>::x2idx(double) const --> int
xy2idx(...)
xy2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, x: float, y: float) -> int
 
C++: mrpt::containers::CDynamicGrid<signed char>::xy2idx(double, double) const --> int
y2idx(...)
y2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_signed_char_t, y: float) -> int
 
C++: mrpt::containers::CDynamicGrid<signed char>::y2idx(double) const --> int

Methods inherited from CLogOddsGridMap2D_signed_char_t:
updateCell_fast_occupied(...)
updateCell_fast_occupied(*args, **kwargs)
Overloaded function.
 
1. updateCell_fast_occupied(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap2D_signed_char_t, x: int, y: int, logodd_obs: int, thres: int, mapArray: int, _size_x: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap2D<signed char>::updateCell_fast_occupied(const unsigned int, const unsigned int, const signed char, const signed char, signed char *, const unsigned int) --> void
 
2. updateCell_fast_occupied(self: mrpt.pymrpt.mrpt.maps.CLogOddsGridMap2D_signed_char_t, theCell: int, logodd_obs: int, thres: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap2D<signed char>::updateCell_fast_occupied(signed char *, const signed char, const signed char) --> void

Static methods inherited from CLogOddsGridMap2D_signed_char_t:
updateCell_fast_free(...) from builtins.PyCapsule
updateCell_fast_free(*args, **kwargs)
Overloaded function.
 
1. updateCell_fast_free(x: int, y: int, logodd_obs: int, thres: int, mapArray: int, _size_x: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap2D<signed char>::updateCell_fast_free(const unsigned int, const unsigned int, const signed char, const signed char, signed char *, const unsigned int) --> void
 
2. updateCell_fast_free(theCell: int, logodd_obs: int, thres: int) -> None
 
C++: mrpt::maps::CLogOddsGridMap2D<signed char>::updateCell_fast_free(signed char *, const signed char, const signed char) --> void

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CSimpleMap(mrpt.pymrpt.mrpt.serialization.CSerializable)
    A view-based representation of a metric map.
 
 This comprises a list of `<ProbabilisticPose,SensoryFrame>` pairs, that is,
 the **poses** (keyframes) from which a set of **observations** where
gathered:
 - Poses, in the global `map` frame of reference, are stored as probabilistic
PDFs over SE(3) as instances of mrpt::poses::CPose3DPDF
 - Observations are stored as mrpt::obs::CSensoryFrame.
 
Note that in order to generate an actual metric map (occupancy grid, point
cloud, octomap, etc.) from a "simple map", you must instantiate the desired
metric map class and invoke its virtual method
mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations().
 
 
Objects of this class are serialized into GZ-compressed
      files with the extension `.simplemap`.
      See [Robotics file formats](robotics_file_formats.html).
 
 
mrpt::obs::CSensoryFrame, mrpt::poses::CPose3DPDF, mrpt::maps::CMetricMap
 
 
Method resolution order:
CSimpleMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CSimpleMap) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CSimpleMap::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CSimpleMap) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, arg0: mrpt.pymrpt.mrpt.maps.CSimpleMap) -> None
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, arg0: mrpt.pymrpt.mrpt.maps.CSimpleMap) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, o: mrpt.pymrpt.mrpt.maps.CSimpleMap) -> mrpt.pymrpt.mrpt.maps.CSimpleMap
 
Copy, making a deep copy of all data. 
 
C++: mrpt::maps::CSimpleMap::operator=(const class mrpt::maps::CSimpleMap &) --> class mrpt::maps::CSimpleMap &
changeCoordinatesOrigin(...)
changeCoordinatesOrigin(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, newOrigin: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
Change the coordinate origin of all stored poses, that is, translates
 and rotates the map such that the old SE(3) origin (identity
 transformation) becomes the new provided one.
 
C++: mrpt::maps::CSimpleMap::changeCoordinatesOrigin(const class mrpt::poses::CPose3D &) --> void
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CSimpleMap) -> None
 
Remove all stored pairs.  
 remove 
 
C++: mrpt::maps::CSimpleMap::clear() --> void
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CSimpleMap) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CSimpleMap::clone() const --> class mrpt::rtti::CObject *
empty(...)
empty(self: mrpt.pymrpt.mrpt.maps.CSimpleMap) -> bool
 
Returns size()!=0 
 
C++: mrpt::maps::CSimpleMap::empty() const --> bool
get(...)
get(*args, **kwargs)
Overloaded function.
 
1. get(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, index: int, out_posePDF: mrpt.pymrpt.mrpt.poses.CPose3DPDF, out_SF: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> None
 
Access to the 0-based index i'th pair.
 
 
 std::exception On index out of bounds.
 
C++: mrpt::maps::CSimpleMap::get(size_t, class std::shared_ptr<const class mrpt::poses::CPose3DPDF> &, class std::shared_ptr<const class mrpt::obs::CSensoryFrame> &) const --> void
 
2. get(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, index: int, out_posePDF: mrpt.pymrpt.mrpt.poses.CPose3DPDF, out_SF: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> None
 
C++: mrpt::maps::CSimpleMap::get(size_t, class std::shared_ptr<class mrpt::poses::CPose3DPDF> &, class std::shared_ptr<class mrpt::obs::CSensoryFrame> &) --> void
 
3. get(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, index: int) -> Tuple[mrpt.pymrpt.mrpt.poses.CPose3DPDF, mrpt.pymrpt.mrpt.obs.CSensoryFrame]
 
C++: mrpt::maps::CSimpleMap::get(size_t) --> class std::tuple<class std::shared_ptr<class mrpt::poses::CPose3DPDF>, class std::shared_ptr<class mrpt::obs::CSensoryFrame> >
getAsPair(...)
getAsPair(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, index: int) -> mrpt::maps::CSimpleMap::Pair
 
C++: mrpt::maps::CSimpleMap::getAsPair(size_t) --> struct mrpt::maps::CSimpleMap::Pair &
insert(...)
insert(*args, **kwargs)
Overloaded function.
 
1. insert(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, in_posePDF: mrpt.pymrpt.mrpt.poses.CPose3DPDF, in_SF: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> None
 
Adds a new keyframe (SE(3) pose) to the view-based map, making a deep
 copy of the pose PDF (observations within the SF are always copied as
 `shared_ptr`s).
 
C++: mrpt::maps::CSimpleMap::insert(const class mrpt::poses::CPose3DPDF &, const class mrpt::obs::CSensoryFrame &) --> void
 
2. insert(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, in_posePDF: mrpt.pymrpt.mrpt.poses.CPose3DPDF, in_SF: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> None
 
Adds a new keyframe (SE(3) pose) to the view-based map.
  Both shared pointers are copied (shallow object copies).
 
C++: mrpt::maps::CSimpleMap::insert(const class std::shared_ptr<class mrpt::poses::CPose3DPDF> &, const class std::shared_ptr<class mrpt::obs::CSensoryFrame> &) --> void
 
3. insert(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, poseSF: mrpt::maps::CSimpleMap::Pair) -> None
 
C++: mrpt::maps::CSimpleMap::insert(const struct mrpt::maps::CSimpleMap::Pair &) --> void
 
4. insert(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, in_posePDF: mrpt.pymrpt.mrpt.poses.CPosePDF, in_SF: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> None
 
Adds a new keyframe (SE(2) pose) to the view-based map, making a deep
 copy of the pose PDF (observations within the SF are always copied as
 `shared_ptr`s).
 
C++: mrpt::maps::CSimpleMap::insert(const class mrpt::poses::CPosePDF &, const class mrpt::obs::CSensoryFrame &) --> void
 
5. insert(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, in_posePDF: mrpt.pymrpt.mrpt.poses.CPosePDF, in_SF: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> None
 
Adds a new keyframe (SE(2) pose) to the view-based map.
  Both shared pointers are copied (shallow object copies).
 
C++: mrpt::maps::CSimpleMap::insert(const class std::shared_ptr<class mrpt::poses::CPosePDF> &, const class std::shared_ptr<class mrpt::obs::CSensoryFrame> &) --> void
loadFromFile(...)
loadFromFile(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, filName: str) -> bool
 
Load the contents of this object from a .simplemap binary file (possibly
 compressed with gzip)
 See [Robotics file formats](robotics_file_formats.html).
 
 
 saveToFile()
 
 
 false on any error. 
 
C++: mrpt::maps::CSimpleMap::loadFromFile(const std::string &) --> bool
remove(...)
remove(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, index: int) -> None
 
Deletes the 0-based index i'th pair.
 
 
 std::exception On index out of bounds.
 
 
 insert, get, set
 
C++: mrpt::maps::CSimpleMap::remove(size_t) --> void
saveToFile(...)
saveToFile(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, filName: str) -> bool
 
Save this object to a .simplemap binary file (compressed with gzip)
 See [Robotics file formats](robotics_file_formats.html).
 
 
 loadFromFile()
 
 
 false on any error. 
 
C++: mrpt::maps::CSimpleMap::saveToFile(const std::string &) const --> bool
set(...)
set(*args, **kwargs)
Overloaded function.
 
1. set(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, index: int, in_posePDF: mrpt.pymrpt.mrpt.poses.CPose3DPDF, in_SF: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> None
 
Changes the 0-based index i'th pair.
  If one of either `in_posePDF` or `in_SF` are empty `shared_ptr`s, the
 corresponding field in the map is not modified.
 
 
 std::exception On index out of bounds.
 
 
 insert, get, remove
 
C++: mrpt::maps::CSimpleMap::set(size_t, const class std::shared_ptr<class mrpt::poses::CPose3DPDF> &, const class std::shared_ptr<class mrpt::obs::CSensoryFrame> &) --> void
 
2. set(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, index: int, poseSF: mrpt::maps::CSimpleMap::Pair) -> None
 
C++: mrpt::maps::CSimpleMap::set(size_t, const struct mrpt::maps::CSimpleMap::Pair &) --> void
 
3. set(self: mrpt.pymrpt.mrpt.maps.CSimpleMap, index: int, in_posePDF: mrpt.pymrpt.mrpt.poses.CPosePDF, in_SF: mrpt.pymrpt.mrpt.obs.CSensoryFrame) -> None
 
C++: mrpt::maps::CSimpleMap::set(size_t, const class std::shared_ptr<class mrpt::poses::CPosePDF> &, const class std::shared_ptr<class mrpt::obs::CSensoryFrame> &) --> void
size(...)
size(self: mrpt.pymrpt.mrpt.maps.CSimpleMap) -> int
 
Returns the count of (pose,sensoryFrame) pairs 
 
C++: mrpt::maps::CSimpleMap::size() const --> size_t

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CSimpleMap::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CSimpleMap::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data and other attributes defined here:
ConstPair = <class 'mrpt.pymrpt.mrpt.maps.CSimpleMap.ConstPair'>
Pair = <class 'mrpt.pymrpt.mrpt.maps.CSimpleMap.Pair'>

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CSimplePointsMap(CPointsMap)
    A cloud of points in 2D or 3D, which can be built from a sequence of laser
scans.
   This class only stores the coordinates (x,y,z) of each point.
 
 See mrpt::maps::CPointsMap and derived classes for other point cloud
classes.
 
 
CMetricMapCWeightedPointsMap, CPoint,
mrpt::serialization::CSerializable
 
 
Method resolution order:
CSimplePointsMap
CPointsMap
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
mrpt.pymrpt.mrpt.opengl.PLY_Importer
mrpt.pymrpt.mrpt.opengl.PLY_Exporter
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CSimplePointsMap) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CSimplePointsMap::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CSimplePointsMap) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CSimplePointsMap, o: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CSimplePointsMap, arg0: mrpt.pymrpt.mrpt.maps.CSimplePointsMap) -> None
 
4. __init__(self: mrpt.pymrpt.mrpt.maps.CSimplePointsMap, arg0: mrpt.pymrpt.mrpt.maps.CSimplePointsMap) -> None
assign(...)
assign(*args, **kwargs)
Overloaded function.
 
1. assign(self: mrpt.pymrpt.mrpt.maps.CSimplePointsMap, o: mrpt.pymrpt.mrpt.maps.CPointsMap) -> mrpt.pymrpt.mrpt.maps.CSimplePointsMap
 
C++: mrpt::maps::CSimplePointsMap::operator=(const class mrpt::maps::CPointsMap &) --> class mrpt::maps::CSimplePointsMap &
 
2. assign(self: mrpt.pymrpt.mrpt.maps.CSimplePointsMap, o: mrpt.pymrpt.mrpt.maps.CSimplePointsMap) -> mrpt.pymrpt.mrpt.maps.CSimplePointsMap
 
C++: mrpt::maps::CSimplePointsMap::operator=(const class mrpt::maps::CSimplePointsMap &) --> class mrpt::maps::CSimplePointsMap &
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CSimplePointsMap) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CSimplePointsMap::clone() const --> class mrpt::rtti::CObject *
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.CSimplePointsMap) -> mrpt.pymrpt.mrpt.maps.CSimplePointsMap
 
@} 
 
C++: mrpt::maps::CSimplePointsMap::getAsSimplePointsMap() const --> const class mrpt::maps::CSimplePointsMap *
insertPointFast(...)
insertPointFast(*args, **kwargs)
Overloaded function.
 
1. insertPointFast(self: mrpt.pymrpt.mrpt.maps.CSimplePointsMap, x: float, y: float) -> None
 
2. insertPointFast(self: mrpt.pymrpt.mrpt.maps.CSimplePointsMap, x: float, y: float, z: float) -> None
 
The virtual method for  *without* calling
 mark_as_modified()   
 
C++: mrpt::maps::CSimplePointsMap::insertPointFast(float, float, float) --> void
reserve(...)
reserve(self: mrpt.pymrpt.mrpt.maps.CSimplePointsMap, newLength: int) -> None
 
           from CPointsMap
                @{ 
 
C++: mrpt::maps::CSimplePointsMap::reserve(size_t) --> void
resize(...)
resize(self: mrpt.pymrpt.mrpt.maps.CSimplePointsMap, newLength: int) -> None
 
C++: mrpt::maps::CSimplePointsMap::resize(size_t) --> void
setSize(...)
setSize(self: mrpt.pymrpt.mrpt.maps.CSimplePointsMap, newLength: int) -> None
 
C++: mrpt::maps::CSimplePointsMap::setSize(size_t) --> void

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CSimplePointsMap::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CSimplePointsMap::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data and other attributes defined here:
TMapDefinition = <class 'mrpt.pymrpt.mrpt.maps.CSimplePointsMap.TMapDefinition'>
TMapDefinitionBase = <class 'mrpt.pymrpt.mrpt.maps.CSimplePointsMap.TMapDefinitionBase'>

Methods inherited from CPointsMap:
__iadd__(...)
__iadd__(self: mrpt.pymrpt.mrpt.maps.CPointsMap, anotherMap: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
Inserts another map into this one. 
 insertAnotherMap() 
 
C++: mrpt::maps::CPointsMap::operator+=(const class mrpt::maps::CPointsMap &) --> void
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> str
 
Returns a short description of the map. 
 
C++: mrpt::maps::CPointsMap::asString() const --> std::string
boundingBox(...)
boundingBox(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> mrpt.pymrpt.mrpt.math.TBoundingBox_float_t
 
Computes the bounding box of all the points, or (0,0 ,0,0, 0,0) if there
 are no points.
  Results are cached unless the map is somehow modified to avoid repeated
 calculations.
 
C++: mrpt::maps::CPointsMap::boundingBox() const --> struct mrpt::math::TBoundingBox_<float>
changeCoordinatesReference(...)
changeCoordinatesReference(*args, **kwargs)
Overloaded function.
 
1. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CPointsMap, b: mrpt.pymrpt.mrpt.poses.CPose2D) -> None
 
Replace each point 
 by 
 (pose
 compounding operator).
 
C++: mrpt::maps::CPointsMap::changeCoordinatesReference(const class mrpt::poses::CPose2D &) --> void
 
2. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CPointsMap, b: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
Replace each point 
 by 
 (pose
 compounding operator).
 
C++: mrpt::maps::CPointsMap::changeCoordinatesReference(const class mrpt::poses::CPose3D &) --> void
 
3. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CPointsMap, other: mrpt.pymrpt.mrpt.maps.CPointsMap, b: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
Copy all the points from "other" map to "this", replacing each point 
 
 
 by 
 (pose compounding operator).
 
C++: mrpt::maps::CPointsMap::changeCoordinatesReference(const class mrpt::maps::CPointsMap &, const class mrpt::poses::CPose3D &) --> void
clipOutOfRange(...)
clipOutOfRange(self: mrpt.pymrpt.mrpt.maps.CPointsMap, point: mrpt::math::TPoint2D_<double>, maxRange: float) -> None
 
Delete points which are more far than "maxRange" away from the given
 "point".
 
C++: mrpt::maps::CPointsMap::clipOutOfRange(const struct mrpt::math::TPoint2D_<double> &, float) --> void
clipOutOfRangeInZ(...)
clipOutOfRangeInZ(self: mrpt.pymrpt.mrpt.maps.CPointsMap, zMin: float, zMax: float) -> None
 
Delete points out of the given "z" axis range have been removed.
 
C++: mrpt::maps::CPointsMap::clipOutOfRangeInZ(float, float) --> void
compute3DDistanceToMesh(...)
compute3DDistanceToMesh(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap2: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, maxDistForCorrespondence: float, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, correspondencesRatio: float) -> None
 
Computes the matchings between this and another 3D points map.
           This method matches each point in the other map with the centroid of the
         3 closest points in 3D
           from this map (if the distance is below a defined threshold).
 
 
                                          [IN] The other map to compute the
         matching with.
 
 
                                  [IN] The pose of the other map as seen
         from "this".
 
 
   [IN] Maximum 2D linear distance
         between two points to be matched.
 
 
                          [OUT] The detected matchings pairs.
 
 
                  [OUT] The ratio [0,1] of points in
         otherMap with at least one correspondence.
 
 
 determineMatching3D
 
C++: mrpt::maps::CPointsMap::compute3DDistanceToMesh(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, float, class mrpt::tfest::TMatchingPairListTempl<float> &, float &) --> void
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
C++: mrpt::maps::CPointsMap::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
C++: mrpt::maps::CPointsMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
C++: mrpt::maps::CPointsMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
empty(...)
empty(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
STL-like method to check whether the map is empty: 
 
C++: mrpt::maps::CPointsMap::empty() const --> bool
enableFilterByHeight(...)
enableFilterByHeight(*args, **kwargs)
Overloaded function.
 
1. enableFilterByHeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
2. enableFilterByHeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap, enable: bool) -> None
 
Enable/disable the filter-by-height functionality 
 
 setHeightFilterLevels 
 
 Default upon construction is disabled. 
 
C++: mrpt::maps::CPointsMap::enableFilterByHeight(bool) --> void
extractCylinder(...)
extractCylinder(self: mrpt.pymrpt.mrpt.maps.CPointsMap, center: mrpt::math::TPoint2D_<double>, radius: float, zmin: float, zmax: float, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
Extracts the points in the map within a cylinder in 3D defined the
 provided radius and zmin/zmax values.
 
C++: mrpt::maps::CPointsMap::extractCylinder(const struct mrpt::math::TPoint2D_<double> &, const double, const double, const double, class mrpt::maps::CPointsMap *) --> void
extractPoints(...)
extractPoints(*args, **kwargs)
Overloaded function.
 
1. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
2. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap, R: float) -> None
 
3. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap, R: float, G: float) -> None
 
4. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap, R: float, G: float, B: float) -> None
 
Extracts the points in the map within the area defined by two corners.
  The points are coloured according the R,G,B input data.
 
C++: mrpt::maps::CPointsMap::extractPoints(const struct mrpt::math::TPoint3D_<double> &, const struct mrpt::math::TPoint3D_<double> &, class mrpt::maps::CPointsMap *, double, double, double) --> void
getHeightFilterLevels(...)
getHeightFilterLevels(self: mrpt.pymrpt.mrpt.maps.CPointsMap, _z_min: float, _z_max: float) -> None
 
Get the min/max Z levels for points to be actually inserted in the map
 
 
 enableFilterByHeight, setHeightFilterLevels 
 
C++: mrpt::maps::CPointsMap::getHeightFilterLevels(double &, double &) const --> void
getLargestDistanceFromOrigin(...)
getLargestDistanceFromOrigin(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> float
 
This method returns the largest distance from the origin to any of the
 points, such as a sphere centered at the origin with this radius cover
 ALL the points in the map (the results are buffered, such as, if the map
 is not modified, the second call will be much faster than the first one).
 
C++: mrpt::maps::CPointsMap::getLargestDistanceFromOrigin() const --> float
getLargestDistanceFromOriginNoRecompute(...)
getLargestDistanceFromOriginNoRecompute(self: mrpt.pymrpt.mrpt.maps.CPointsMap, output_is_valid: bool) -> float
 
Like  but returns in 
 = false if the distance was not already computed, skipping its
 computation then, unlike getLargestDistanceFromOrigin() 
 
C++: mrpt::maps::CPointsMap::getLargestDistanceFromOriginNoRecompute(bool &) const --> float
getPoint(...)
getPoint(*args, **kwargs)
Overloaded function.
 
1. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Access to a given point from map, as a 2D point. First index is 0.
 
 
 Throws std::exception on index out of bound.
 
 
 setPoint, getPointFast
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, float &, float &, float &) const --> void
 
2. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, float &, float &) const --> void
 
3. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, double &, double &, double &) const --> void
 
4. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, double &, double &) const --> void
 
5. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint2D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, struct mrpt::math::TPoint2D_<double> &) const --> void
 
6. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint3D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, struct mrpt::math::TPoint3D_<double> &) const --> void
getPointFast(...)
getPointFast(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Just like  but without checking out-of-bound index and
 without returning the point weight, just XYZ.
 
C++: mrpt::maps::CPointsMap::getPointFast(size_t, float &, float &, float &) const --> void
getPointRGB(...)
getPointRGB(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float, R: float, G: float, B: float) -> None
 
Access to a given point from map, and its colors, if the map defines
 them (othersise, R=G=B=1.0). First index is 0.
 
 
 The return value is the weight of the point (the times it has
 been fused)
 
 
 Throws std::exception on index out of bound.
 
C++: mrpt::maps::CPointsMap::getPointRGB(size_t, float &, float &, float &, float &, float &, float &) const --> void
getPointWeight(...)
getPointWeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int) -> int
 
Gets the point weight, which is ignored in all classes (defaults to 1)
 but in those which actually store that field (Note: No checks are done
 for out-of-bounds index).  
 
 setPointWeight
 
C++: mrpt::maps::CPointsMap::getPointWeight(size_t) const --> unsigned int
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.CPointsMap, outObj: mrpt::opengl::CSetOfObjects) -> None
 
Returns a 3D object representing the map.
  The color of the points is controlled by renderOptions
 
C++: mrpt::maps::CPointsMap::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
hasColorPoints(...)
hasColorPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
Returns true if the point map has a color field for each point 
 
C++: mrpt::maps::CPointsMap::hasColorPoints() const --> bool
insertAnotherMap(...)
insertAnotherMap(*args, **kwargs)
Overloaded function.
 
1. insertAnotherMap(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CPointsMap, otherPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
2. insertAnotherMap(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CPointsMap, otherPose: mrpt.pymrpt.mrpt.poses.CPose3D, filterOutPointsAtZero: bool) -> None
 
Insert the contents of another map into this one with some geometric
 transformation, without fusing close points.
 
 
 The other map whose points are to be inserted into this
 one.
 
 
 The pose of the other map in the coordinates of THIS map
 
 
 If true, points at (0,0,0) (in the frame of
 reference of `otherMap`) will be assumed to be invalid and will not be
 copied.
 
 
 fuseWith, addFrom
 
C++: mrpt::maps::CPointsMap::insertAnotherMap(const class mrpt::maps::CPointsMap *, const class mrpt::poses::CPose3D &, const bool) --> void
insertPoint(...)
insertPoint(*args, **kwargs)
Overloaded function.
 
1. insertPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x: float, y: float) -> None
 
2. insertPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x: float, y: float, z: float) -> None
 
Provides a way to insert (append) individual points into the map: the
 missing fields of child
 classes (color, weight, etc) are left to their default values
 
C++: mrpt::maps::CPointsMap::insertPoint(float, float, float) --> void
 
3. insertPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, p: mrpt::math::TPoint3D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::insertPoint(const struct mrpt::math::TPoint3D_<double> &) --> void
insertPointRGB(...)
insertPointRGB(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x: float, y: float, z: float, R: float, G: float, B: float) -> None
 
overload (RGB data is ignored in classes without color information)
 
C++: mrpt::maps::CPointsMap::insertPointRGB(float, float, float, float, float, float) --> void
internal_computeObservationLikelihood(...)
internal_computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CPointsMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
@} 
 
C++: mrpt::maps::CPointsMap::internal_computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
internal_computeObservationLikelihoodPointCloud3D(...)
internal_computeObservationLikelihoodPointCloud3D(self: mrpt.pymrpt.mrpt.maps.CPointsMap, pc_in_map: mrpt.pymrpt.mrpt.poses.CPose3D, xs: float, ys: float, zs: float, num_pts: int) -> float
 
C++: mrpt::maps::CPointsMap::internal_computeObservationLikelihoodPointCloud3D(const class mrpt::poses::CPose3D &, const float *, const float *, const float *, const unsigned long) const --> double
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
Returns true if the map is empty/no observation has been inserted.
 
C++: mrpt::maps::CPointsMap::isEmpty() const --> bool
isFilterByHeightEnabled(...)
isFilterByHeightEnabled(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
Return whether filter-by-height is enabled 
 enableFilterByHeight 
 
C++: mrpt::maps::CPointsMap::isFilterByHeightEnabled() const --> bool
kdtree_distance(...)
kdtree_distance(self: mrpt.pymrpt.mrpt.maps.CPointsMap, p1: float, idx_p2: int, size: int) -> float
 
Returns the distance between the vector "p1[0:size-1]" and the data
 point with index "idx_p2" stored in the class:
 
C++: mrpt::maps::CPointsMap::kdtree_distance(const float *, size_t, size_t) const --> float
kdtree_get_point_count(...)
kdtree_get_point_count(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> int
 
Must return the number of data points
 
C++: mrpt::maps::CPointsMap::kdtree_get_point_count() const --> size_t
kdtree_get_pt(...)
kdtree_get_pt(self: mrpt.pymrpt.mrpt.maps.CPointsMap, idx: int, dim: int) -> float
 
Returns the dim'th component of the idx'th point in the class:
 
C++: mrpt::maps::CPointsMap::kdtree_get_pt(size_t, int) const --> float
load2D_from_text_file(...)
load2D_from_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Load from a text file. Each line should contain an "X Y" coordinate
 pair, separated by whitespaces.
   Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::load2D_from_text_file(const std::string &) --> bool
load2Dor3D_from_text_file(...)
load2Dor3D_from_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str, is_3D: bool) -> bool
 
2D or 3D generic implementation of  and
 load3D_from_text_file 
 
C++: mrpt::maps::CPointsMap::load2Dor3D_from_text_file(const std::string &, const bool) --> bool
load3D_from_text_file(...)
load3D_from_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Load from a text file. Each line should contain an "X Y Z" coordinate
 tuple, separated by whitespaces.
   Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::load3D_from_text_file(const std::string &) --> bool
mark_as_modified(...)
mark_as_modified(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
Users normally don't need to call this. Called by this class or children
 classes, set m_largestDistanceFromOriginIsUpdated=false, invalidates the
 kd-tree cache, and such. 
 
C++: mrpt::maps::CPointsMap::mark_as_modified() const --> void
save2D_to_text_file(...)
save2D_to_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Save to a text file. Each line will contain "X Y" point coordinates.
                Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::save2D_to_text_file(const std::string &) const --> bool
save3D_to_text_file(...)
save3D_to_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Save to a text file. Each line will contain "X Y Z" point coordinates.
     Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::save3D_to_text_file(const std::string &) const --> bool
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.CPointsMap, filNamePrefix: str) -> None
 
This virtual method saves the map to a file "filNamePrefix"+<
 some_file_extension >, as an image or in any other applicable way (Notice
 that other methods to save the map may be implemented in classes
 implementing this virtual interface) 
 
C++: mrpt::maps::CPointsMap::saveMetricMapRepresentationToFile(const std::string &) const --> void
setHeightFilterLevels(...)
setHeightFilterLevels(self: mrpt.pymrpt.mrpt.maps.CPointsMap, _z_min: float, _z_max: float) -> None
 
Set the min/max Z levels for points to be actually inserted in the map
 (only if  was called before). 
 
C++: mrpt::maps::CPointsMap::setHeightFilterLevels(const double, const double) --> void
setPoint(...)
setPoint(*args, **kwargs)
Overloaded function.
 
1. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Changes a given point from map, with Z defaulting to 0 if not provided.
 
 
 Throws std::exception on index out of bound.
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, float, float, float) --> void
 
2. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint2D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, const struct mrpt::math::TPoint2D_<double> &) --> void
 
3. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint3D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, const struct mrpt::math::TPoint3D_<double> &) --> void
 
4. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float) -> None
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, float, float) --> void
setPointFast(...)
setPointFast(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Changes the coordinates of the given point (0-based index), *without*
 checking for out-of-bounds and *without* calling mark_as_modified().
 Also, color, intensity, or other data is left unchanged. 
 
 setPoint 
 
C++: mrpt::maps::CPointsMap::setPointFast(size_t, float, float, float) --> void
setPointRGB(...)
setPointRGB(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float, R: float, G: float, B: float) -> None
 
overload (RGB data is ignored in classes without color information)
 
C++: mrpt::maps::CPointsMap::setPointRGB(size_t, float, float, float, float, float, float) --> void
setPointWeight(...)
setPointWeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, w: int) -> None
 
Sets the point weight, which is ignored in all classes but those which
 actually store that field (Note: No checks are done for out-of-bounds
 index). 
 
 getPointWeight
 
C++: mrpt::maps::CPointsMap::setPointWeight(size_t, unsigned long) --> void
size(...)
size(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> int
 
Returns the number of stored points in the map.
 
C++: mrpt::maps::CPointsMap::size() const --> size_t
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map.
 
C++: mrpt::maps::CPointsMap::squareDistanceToClosestCorrespondence(float, float) const --> float
squareDistanceToClosestCorrespondenceT(...)
squareDistanceToClosestCorrespondenceT(self: mrpt.pymrpt.mrpt.maps.CPointsMap, p0: mrpt::math::TPoint2D_<double>) -> float
 
C++: mrpt::maps::CPointsMap::squareDistanceToClosestCorrespondenceT(const struct mrpt::math::TPoint2D_<double> &) const --> float

Data descriptors inherited from CPointsMap:
insertionOptions
likelihoodOptions
renderOptions

Data and other attributes inherited from CPointsMap:
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.CPointsMap.TInsertionOptions'>
With this struct options are provided to the observation insertion
process.
 
 
CObservation::insertIntoPointsMap
TLikelihoodOptions = <class 'mrpt.pymrpt.mrpt.maps.CPointsMap.TLikelihoodOptions'>
Options used when evaluating "computeObservationLikelihood" in the
derived classes.
 
 
CObservation::computeObservationLikelihood
TRenderOptions = <class 'mrpt.pymrpt.mrpt.maps.CPointsMap.TRenderOptions'>
Rendering options, used in getAs3DObject()

Methods inherited from CMetricMap:
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
Erase all the contents of the map 
 
C++: mrpt::maps::CMetricMap::clear() --> void
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void

Data descriptors inherited from CMetricMap:
genericMapParams

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Methods inherited from mrpt.pymrpt.mrpt.opengl.PLY_Importer:
getLoadPLYErrorString(...)
getLoadPLYErrorString(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer) -> str
 
Return a description of the error if loadFromPlyFile() returned false,
 or an empty string if the file was loaded without problems. 
 
C++: mrpt::opengl::PLY_Importer::getLoadPLYErrorString() const --> std::string
loadFromPlyFile(...)
loadFromPlyFile(*args, **kwargs)
Overloaded function.
 
1. loadFromPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer, filename: str) -> bool
 
2. loadFromPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer, filename: str, file_comments: List[str]) -> bool
 
3. loadFromPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer, filename: str, file_comments: List[str], file_obj_info: List[str]) -> bool
 
Loads from a PLY file.
 
 
 The filename to open. It can be either in binary or
 text format.
 
 
 If provided (!=nullptr) the list of comment
 strings stored in the file will be returned.
 
 
 If provided (!=nullptr) the list of "object
 info" strings stored in the file will be returned.
 
 
 false on any error in the file format or reading it. To obtain
 more details on the error you can call getLoadPLYErrorString()
 
C++: mrpt::opengl::PLY_Importer::loadFromPlyFile(const std::string &, class std::vector<std::string > *, class std::vector<std::string > *) --> bool

Methods inherited from mrpt.pymrpt.mrpt.opengl.PLY_Exporter:
getSavePLYErrorString(...)
getSavePLYErrorString(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter) -> str
 
Return a description of the error if loadFromPlyFile() returned false,
 or an empty string if the file was loaded without problems. 
 
C++: mrpt::opengl::PLY_Exporter::getSavePLYErrorString() const --> std::string
saveToPlyFile(...)
saveToPlyFile(*args, **kwargs)
Overloaded function.
 
1. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str) -> bool
 
2. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str, save_in_binary: bool) -> bool
 
3. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str, save_in_binary: bool, file_comments: List[str]) -> bool
 
4. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str, save_in_binary: bool, file_comments: List[str], file_obj_info: List[str]) -> bool
 
Saves to a PLY file.
 
 
 The filename to be saved.
 
 
 If provided (!=nullptr) the list of comment
 strings stored in the file will be returned.
 
 
 If provided (!=nullptr) the list of "object
 info" strings stored in the file will be returned.
 
 
 false on any error writing the file. To obtain more details on
 the error you can call getSavePLYErrorString()
 
C++: mrpt::opengl::PLY_Exporter::saveToPlyFile(const std::string &, bool, const class std::vector<std::string > &, const class std::vector<std::string > &) const --> bool

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CWeightedPointsMap(CPointsMap)
    A cloud of points in 2D or 3D, which can be built from a sequence of laser
scans.
   This class stores the coordinates (x,y,z) and a "weight", or counter of
how many times that point has been seen, used only if points fusion is
enabled in the options structure.
 
 
CMetricMap, CPoint, mrpt::serialization::CSerializableCSimplePointsMap
 
 
Method resolution order:
CWeightedPointsMap
CPointsMap
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
mrpt.pymrpt.mrpt.opengl.PLY_Importer
mrpt.pymrpt.mrpt.opengl.PLY_Exporter
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CWeightedPointsMap::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap, o: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap, arg0: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap) -> None
 
4. __init__(self: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap, arg0: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap) -> None
assign(...)
assign(*args, **kwargs)
Overloaded function.
 
1. assign(self: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap, o: mrpt.pymrpt.mrpt.maps.CPointsMap) -> mrpt.pymrpt.mrpt.maps.CWeightedPointsMap
 
C++: mrpt::maps::CWeightedPointsMap::operator=(const class mrpt::maps::CPointsMap &) --> class mrpt::maps::CWeightedPointsMap &
 
2. assign(self: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap, o: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap) -> mrpt.pymrpt.mrpt.maps.CWeightedPointsMap
 
C++: mrpt::maps::CWeightedPointsMap::operator=(const class mrpt::maps::CWeightedPointsMap &) --> class mrpt::maps::CWeightedPointsMap &
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CWeightedPointsMap::clone() const --> class mrpt::rtti::CObject *
getPointWeight(...)
getPointWeight(self: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap, index: int) -> int
 
Gets the point weight, which is ignored in all classes (defaults to 1)
 but in those which actually store that field (Note: No checks are done
 for out-of-bounds index).  
 
 setPointWeight
 
C++: mrpt::maps::CWeightedPointsMap::getPointWeight(size_t) const --> unsigned int
insertPointFast(...)
insertPointFast(*args, **kwargs)
Overloaded function.
 
1. insertPointFast(self: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap, x: float, y: float) -> None
 
2. insertPointFast(self: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap, x: float, y: float, z: float) -> None
 
The virtual method for  *without* calling
 mark_as_modified()   
 
C++: mrpt::maps::CWeightedPointsMap::insertPointFast(float, float, float) --> void
reserve(...)
reserve(self: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap, newLength: int) -> None
 
           from CPointsMap
                @{ 
 
C++: mrpt::maps::CWeightedPointsMap::reserve(size_t) --> void
resize(...)
resize(self: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap, newLength: int) -> None
 
C++: mrpt::maps::CWeightedPointsMap::resize(size_t) --> void
setPointWeight(...)
setPointWeight(self: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap, index: int, w: int) -> None
 
Sets the point weight, which is ignored in all classes but those which
 actually store that field (Note: No checks are done for out-of-bounds
 index). 
 
 getPointWeight
 
C++: mrpt::maps::CWeightedPointsMap::setPointWeight(size_t, unsigned long) --> void
setSize(...)
setSize(self: mrpt.pymrpt.mrpt.maps.CWeightedPointsMap, newLength: int) -> None
 
C++: mrpt::maps::CWeightedPointsMap::setSize(size_t) --> void

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CWeightedPointsMap::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CWeightedPointsMap::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data and other attributes defined here:
TMapDefinition = <class 'mrpt.pymrpt.mrpt.maps.CWeightedPointsMap.TMapDefinition'>
TMapDefinitionBase = <class 'mrpt.pymrpt.mrpt.maps.CWeightedPointsMap.TMapDefinitionBase'>

Methods inherited from CPointsMap:
__iadd__(...)
__iadd__(self: mrpt.pymrpt.mrpt.maps.CPointsMap, anotherMap: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
Inserts another map into this one. 
 insertAnotherMap() 
 
C++: mrpt::maps::CPointsMap::operator+=(const class mrpt::maps::CPointsMap &) --> void
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> str
 
Returns a short description of the map. 
 
C++: mrpt::maps::CPointsMap::asString() const --> std::string
boundingBox(...)
boundingBox(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> mrpt.pymrpt.mrpt.math.TBoundingBox_float_t
 
Computes the bounding box of all the points, or (0,0 ,0,0, 0,0) if there
 are no points.
  Results are cached unless the map is somehow modified to avoid repeated
 calculations.
 
C++: mrpt::maps::CPointsMap::boundingBox() const --> struct mrpt::math::TBoundingBox_<float>
changeCoordinatesReference(...)
changeCoordinatesReference(*args, **kwargs)
Overloaded function.
 
1. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CPointsMap, b: mrpt.pymrpt.mrpt.poses.CPose2D) -> None
 
Replace each point 
 by 
 (pose
 compounding operator).
 
C++: mrpt::maps::CPointsMap::changeCoordinatesReference(const class mrpt::poses::CPose2D &) --> void
 
2. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CPointsMap, b: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
Replace each point 
 by 
 (pose
 compounding operator).
 
C++: mrpt::maps::CPointsMap::changeCoordinatesReference(const class mrpt::poses::CPose3D &) --> void
 
3. changeCoordinatesReference(self: mrpt.pymrpt.mrpt.maps.CPointsMap, other: mrpt.pymrpt.mrpt.maps.CPointsMap, b: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
Copy all the points from "other" map to "this", replacing each point 
 
 
 by 
 (pose compounding operator).
 
C++: mrpt::maps::CPointsMap::changeCoordinatesReference(const class mrpt::maps::CPointsMap &, const class mrpt::poses::CPose3D &) --> void
clipOutOfRange(...)
clipOutOfRange(self: mrpt.pymrpt.mrpt.maps.CPointsMap, point: mrpt::math::TPoint2D_<double>, maxRange: float) -> None
 
Delete points which are more far than "maxRange" away from the given
 "point".
 
C++: mrpt::maps::CPointsMap::clipOutOfRange(const struct mrpt::math::TPoint2D_<double> &, float) --> void
clipOutOfRangeInZ(...)
clipOutOfRangeInZ(self: mrpt.pymrpt.mrpt.maps.CPointsMap, zMin: float, zMax: float) -> None
 
Delete points out of the given "z" axis range have been removed.
 
C++: mrpt::maps::CPointsMap::clipOutOfRangeInZ(float, float) --> void
compute3DDistanceToMesh(...)
compute3DDistanceToMesh(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap2: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, maxDistForCorrespondence: float, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, correspondencesRatio: float) -> None
 
Computes the matchings between this and another 3D points map.
           This method matches each point in the other map with the centroid of the
         3 closest points in 3D
           from this map (if the distance is below a defined threshold).
 
 
                                          [IN] The other map to compute the
         matching with.
 
 
                                  [IN] The pose of the other map as seen
         from "this".
 
 
   [IN] Maximum 2D linear distance
         between two points to be matched.
 
 
                          [OUT] The detected matchings pairs.
 
 
                  [OUT] The ratio [0,1] of points in
         otherMap with at least one correspondence.
 
 
 determineMatching3D
 
C++: mrpt::maps::CPointsMap::compute3DDistanceToMesh(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, float, class mrpt::tfest::TMatchingPairListTempl<float> &, float &) --> void
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
C++: mrpt::maps::CPointsMap::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
C++: mrpt::maps::CPointsMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
C++: mrpt::maps::CPointsMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
empty(...)
empty(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
STL-like method to check whether the map is empty: 
 
C++: mrpt::maps::CPointsMap::empty() const --> bool
enableFilterByHeight(...)
enableFilterByHeight(*args, **kwargs)
Overloaded function.
 
1. enableFilterByHeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
2. enableFilterByHeight(self: mrpt.pymrpt.mrpt.maps.CPointsMap, enable: bool) -> None
 
Enable/disable the filter-by-height functionality 
 
 setHeightFilterLevels 
 
 Default upon construction is disabled. 
 
C++: mrpt::maps::CPointsMap::enableFilterByHeight(bool) --> void
extractCylinder(...)
extractCylinder(self: mrpt.pymrpt.mrpt.maps.CPointsMap, center: mrpt::math::TPoint2D_<double>, radius: float, zmin: float, zmax: float, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
Extracts the points in the map within a cylinder in 3D defined the
 provided radius and zmin/zmax values.
 
C++: mrpt::maps::CPointsMap::extractCylinder(const struct mrpt::math::TPoint2D_<double> &, const double, const double, const double, class mrpt::maps::CPointsMap *) --> void
extractPoints(...)
extractPoints(*args, **kwargs)
Overloaded function.
 
1. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
2. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap, R: float) -> None
 
3. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap, R: float, G: float) -> None
 
4. extractPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap, corner1: mrpt::math::TPoint3D_<double>, corner2: mrpt::math::TPoint3D_<double>, outMap: mrpt.pymrpt.mrpt.maps.CPointsMap, R: float, G: float, B: float) -> None
 
Extracts the points in the map within the area defined by two corners.
  The points are coloured according the R,G,B input data.
 
C++: mrpt::maps::CPointsMap::extractPoints(const struct mrpt::math::TPoint3D_<double> &, const struct mrpt::math::TPoint3D_<double> &, class mrpt::maps::CPointsMap *, double, double, double) --> void
getHeightFilterLevels(...)
getHeightFilterLevels(self: mrpt.pymrpt.mrpt.maps.CPointsMap, _z_min: float, _z_max: float) -> None
 
Get the min/max Z levels for points to be actually inserted in the map
 
 
 enableFilterByHeight, setHeightFilterLevels 
 
C++: mrpt::maps::CPointsMap::getHeightFilterLevels(double &, double &) const --> void
getLargestDistanceFromOrigin(...)
getLargestDistanceFromOrigin(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> float
 
This method returns the largest distance from the origin to any of the
 points, such as a sphere centered at the origin with this radius cover
 ALL the points in the map (the results are buffered, such as, if the map
 is not modified, the second call will be much faster than the first one).
 
C++: mrpt::maps::CPointsMap::getLargestDistanceFromOrigin() const --> float
getLargestDistanceFromOriginNoRecompute(...)
getLargestDistanceFromOriginNoRecompute(self: mrpt.pymrpt.mrpt.maps.CPointsMap, output_is_valid: bool) -> float
 
Like  but returns in 
 = false if the distance was not already computed, skipping its
 computation then, unlike getLargestDistanceFromOrigin() 
 
C++: mrpt::maps::CPointsMap::getLargestDistanceFromOriginNoRecompute(bool &) const --> float
getPoint(...)
getPoint(*args, **kwargs)
Overloaded function.
 
1. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Access to a given point from map, as a 2D point. First index is 0.
 
 
 Throws std::exception on index out of bound.
 
 
 setPoint, getPointFast
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, float &, float &, float &) const --> void
 
2. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, float &, float &) const --> void
 
3. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, double &, double &, double &) const --> void
 
4. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, double &, double &) const --> void
 
5. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint2D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, struct mrpt::math::TPoint2D_<double> &) const --> void
 
6. getPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint3D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::getPoint(size_t, struct mrpt::math::TPoint3D_<double> &) const --> void
getPointFast(...)
getPointFast(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Just like  but without checking out-of-bound index and
 without returning the point weight, just XYZ.
 
C++: mrpt::maps::CPointsMap::getPointFast(size_t, float &, float &, float &) const --> void
getPointRGB(...)
getPointRGB(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float, R: float, G: float, B: float) -> None
 
Access to a given point from map, and its colors, if the map defines
 them (othersise, R=G=B=1.0). First index is 0.
 
 
 The return value is the weight of the point (the times it has
 been fused)
 
 
 Throws std::exception on index out of bound.
 
C++: mrpt::maps::CPointsMap::getPointRGB(size_t, float &, float &, float &, float &, float &, float &) const --> void
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.CPointsMap, outObj: mrpt::opengl::CSetOfObjects) -> None
 
Returns a 3D object representing the map.
  The color of the points is controlled by renderOptions
 
C++: mrpt::maps::CPointsMap::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void
hasColorPoints(...)
hasColorPoints(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
Returns true if the point map has a color field for each point 
 
C++: mrpt::maps::CPointsMap::hasColorPoints() const --> bool
insertAnotherMap(...)
insertAnotherMap(*args, **kwargs)
Overloaded function.
 
1. insertAnotherMap(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CPointsMap, otherPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> None
 
2. insertAnotherMap(self: mrpt.pymrpt.mrpt.maps.CPointsMap, otherMap: mrpt.pymrpt.mrpt.maps.CPointsMap, otherPose: mrpt.pymrpt.mrpt.poses.CPose3D, filterOutPointsAtZero: bool) -> None
 
Insert the contents of another map into this one with some geometric
 transformation, without fusing close points.
 
 
 The other map whose points are to be inserted into this
 one.
 
 
 The pose of the other map in the coordinates of THIS map
 
 
 If true, points at (0,0,0) (in the frame of
 reference of `otherMap`) will be assumed to be invalid and will not be
 copied.
 
 
 fuseWith, addFrom
 
C++: mrpt::maps::CPointsMap::insertAnotherMap(const class mrpt::maps::CPointsMap *, const class mrpt::poses::CPose3D &, const bool) --> void
insertPoint(...)
insertPoint(*args, **kwargs)
Overloaded function.
 
1. insertPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x: float, y: float) -> None
 
2. insertPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x: float, y: float, z: float) -> None
 
Provides a way to insert (append) individual points into the map: the
 missing fields of child
 classes (color, weight, etc) are left to their default values
 
C++: mrpt::maps::CPointsMap::insertPoint(float, float, float) --> void
 
3. insertPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, p: mrpt::math::TPoint3D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::insertPoint(const struct mrpt::math::TPoint3D_<double> &) --> void
insertPointRGB(...)
insertPointRGB(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x: float, y: float, z: float, R: float, G: float, B: float) -> None
 
overload (RGB data is ignored in classes without color information)
 
C++: mrpt::maps::CPointsMap::insertPointRGB(float, float, float, float, float, float) --> void
internal_computeObservationLikelihood(...)
internal_computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CPointsMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
@} 
 
C++: mrpt::maps::CPointsMap::internal_computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
internal_computeObservationLikelihoodPointCloud3D(...)
internal_computeObservationLikelihoodPointCloud3D(self: mrpt.pymrpt.mrpt.maps.CPointsMap, pc_in_map: mrpt.pymrpt.mrpt.poses.CPose3D, xs: float, ys: float, zs: float, num_pts: int) -> float
 
C++: mrpt::maps::CPointsMap::internal_computeObservationLikelihoodPointCloud3D(const class mrpt::poses::CPose3D &, const float *, const float *, const float *, const unsigned long) const --> double
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
Returns true if the map is empty/no observation has been inserted.
 
C++: mrpt::maps::CPointsMap::isEmpty() const --> bool
isFilterByHeightEnabled(...)
isFilterByHeightEnabled(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> bool
 
Return whether filter-by-height is enabled 
 enableFilterByHeight 
 
C++: mrpt::maps::CPointsMap::isFilterByHeightEnabled() const --> bool
kdtree_distance(...)
kdtree_distance(self: mrpt.pymrpt.mrpt.maps.CPointsMap, p1: float, idx_p2: int, size: int) -> float
 
Returns the distance between the vector "p1[0:size-1]" and the data
 point with index "idx_p2" stored in the class:
 
C++: mrpt::maps::CPointsMap::kdtree_distance(const float *, size_t, size_t) const --> float
kdtree_get_point_count(...)
kdtree_get_point_count(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> int
 
Must return the number of data points
 
C++: mrpt::maps::CPointsMap::kdtree_get_point_count() const --> size_t
kdtree_get_pt(...)
kdtree_get_pt(self: mrpt.pymrpt.mrpt.maps.CPointsMap, idx: int, dim: int) -> float
 
Returns the dim'th component of the idx'th point in the class:
 
C++: mrpt::maps::CPointsMap::kdtree_get_pt(size_t, int) const --> float
load2D_from_text_file(...)
load2D_from_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Load from a text file. Each line should contain an "X Y" coordinate
 pair, separated by whitespaces.
   Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::load2D_from_text_file(const std::string &) --> bool
load2Dor3D_from_text_file(...)
load2Dor3D_from_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str, is_3D: bool) -> bool
 
2D or 3D generic implementation of  and
 load3D_from_text_file 
 
C++: mrpt::maps::CPointsMap::load2Dor3D_from_text_file(const std::string &, const bool) --> bool
load3D_from_text_file(...)
load3D_from_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Load from a text file. Each line should contain an "X Y Z" coordinate
 tuple, separated by whitespaces.
   Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::load3D_from_text_file(const std::string &) --> bool
mark_as_modified(...)
mark_as_modified(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> None
 
Users normally don't need to call this. Called by this class or children
 classes, set m_largestDistanceFromOriginIsUpdated=false, invalidates the
 kd-tree cache, and such. 
 
C++: mrpt::maps::CPointsMap::mark_as_modified() const --> void
save2D_to_text_file(...)
save2D_to_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Save to a text file. Each line will contain "X Y" point coordinates.
                Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::save2D_to_text_file(const std::string &) const --> bool
save3D_to_text_file(...)
save3D_to_text_file(self: mrpt.pymrpt.mrpt.maps.CPointsMap, file: str) -> bool
 
Save to a text file. Each line will contain "X Y Z" point coordinates.
     Returns false if any error occured, true elsewere.
 
C++: mrpt::maps::CPointsMap::save3D_to_text_file(const std::string &) const --> bool
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.CPointsMap, filNamePrefix: str) -> None
 
This virtual method saves the map to a file "filNamePrefix"+<
 some_file_extension >, as an image or in any other applicable way (Notice
 that other methods to save the map may be implemented in classes
 implementing this virtual interface) 
 
C++: mrpt::maps::CPointsMap::saveMetricMapRepresentationToFile(const std::string &) const --> void
setHeightFilterLevels(...)
setHeightFilterLevels(self: mrpt.pymrpt.mrpt.maps.CPointsMap, _z_min: float, _z_max: float) -> None
 
Set the min/max Z levels for points to be actually inserted in the map
 (only if  was called before). 
 
C++: mrpt::maps::CPointsMap::setHeightFilterLevels(const double, const double) --> void
setPoint(...)
setPoint(*args, **kwargs)
Overloaded function.
 
1. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Changes a given point from map, with Z defaulting to 0 if not provided.
 
 
 Throws std::exception on index out of bound.
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, float, float, float) --> void
 
2. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint2D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, const struct mrpt::math::TPoint2D_<double> &) --> void
 
3. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, p: mrpt::math::TPoint3D_<double>) -> None
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, const struct mrpt::math::TPoint3D_<double> &) --> void
 
4. setPoint(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float) -> None
 
C++: mrpt::maps::CPointsMap::setPoint(size_t, float, float) --> void
setPointFast(...)
setPointFast(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float) -> None
 
Changes the coordinates of the given point (0-based index), *without*
 checking for out-of-bounds and *without* calling mark_as_modified().
 Also, color, intensity, or other data is left unchanged. 
 
 setPoint 
 
C++: mrpt::maps::CPointsMap::setPointFast(size_t, float, float, float) --> void
setPointRGB(...)
setPointRGB(self: mrpt.pymrpt.mrpt.maps.CPointsMap, index: int, x: float, y: float, z: float, R: float, G: float, B: float) -> None
 
overload (RGB data is ignored in classes without color information)
 
C++: mrpt::maps::CPointsMap::setPointRGB(size_t, float, float, float, float, float, float) --> void
size(...)
size(self: mrpt.pymrpt.mrpt.maps.CPointsMap) -> int
 
Returns the number of stored points in the map.
 
C++: mrpt::maps::CPointsMap::size() const --> size_t
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.CPointsMap, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map.
 
C++: mrpt::maps::CPointsMap::squareDistanceToClosestCorrespondence(float, float) const --> float
squareDistanceToClosestCorrespondenceT(...)
squareDistanceToClosestCorrespondenceT(self: mrpt.pymrpt.mrpt.maps.CPointsMap, p0: mrpt::math::TPoint2D_<double>) -> float
 
C++: mrpt::maps::CPointsMap::squareDistanceToClosestCorrespondenceT(const struct mrpt::math::TPoint2D_<double> &) const --> float

Data descriptors inherited from CPointsMap:
insertionOptions
likelihoodOptions
renderOptions

Data and other attributes inherited from CPointsMap:
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.CPointsMap.TInsertionOptions'>
With this struct options are provided to the observation insertion
process.
 
 
CObservation::insertIntoPointsMap
TLikelihoodOptions = <class 'mrpt.pymrpt.mrpt.maps.CPointsMap.TLikelihoodOptions'>
Options used when evaluating "computeObservationLikelihood" in the
derived classes.
 
 
CObservation::computeObservationLikelihood
TRenderOptions = <class 'mrpt.pymrpt.mrpt.maps.CPointsMap.TRenderOptions'>
Rendering options, used in getAs3DObject()

Methods inherited from CMetricMap:
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
Erase all the contents of the map 
 
C++: mrpt::maps::CMetricMap::clear() --> void
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void

Data descriptors inherited from CMetricMap:
genericMapParams

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Methods inherited from mrpt.pymrpt.mrpt.opengl.PLY_Importer:
getLoadPLYErrorString(...)
getLoadPLYErrorString(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer) -> str
 
Return a description of the error if loadFromPlyFile() returned false,
 or an empty string if the file was loaded without problems. 
 
C++: mrpt::opengl::PLY_Importer::getLoadPLYErrorString() const --> std::string
loadFromPlyFile(...)
loadFromPlyFile(*args, **kwargs)
Overloaded function.
 
1. loadFromPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer, filename: str) -> bool
 
2. loadFromPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer, filename: str, file_comments: List[str]) -> bool
 
3. loadFromPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Importer, filename: str, file_comments: List[str], file_obj_info: List[str]) -> bool
 
Loads from a PLY file.
 
 
 The filename to open. It can be either in binary or
 text format.
 
 
 If provided (!=nullptr) the list of comment
 strings stored in the file will be returned.
 
 
 If provided (!=nullptr) the list of "object
 info" strings stored in the file will be returned.
 
 
 false on any error in the file format or reading it. To obtain
 more details on the error you can call getLoadPLYErrorString()
 
C++: mrpt::opengl::PLY_Importer::loadFromPlyFile(const std::string &, class std::vector<std::string > *, class std::vector<std::string > *) --> bool

Methods inherited from mrpt.pymrpt.mrpt.opengl.PLY_Exporter:
getSavePLYErrorString(...)
getSavePLYErrorString(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter) -> str
 
Return a description of the error if loadFromPlyFile() returned false,
 or an empty string if the file was loaded without problems. 
 
C++: mrpt::opengl::PLY_Exporter::getSavePLYErrorString() const --> std::string
saveToPlyFile(...)
saveToPlyFile(*args, **kwargs)
Overloaded function.
 
1. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str) -> bool
 
2. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str, save_in_binary: bool) -> bool
 
3. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str, save_in_binary: bool, file_comments: List[str]) -> bool
 
4. saveToPlyFile(self: mrpt.pymrpt.mrpt.opengl.PLY_Exporter, filename: str, save_in_binary: bool, file_comments: List[str], file_obj_info: List[str]) -> bool
 
Saves to a PLY file.
 
 
 The filename to be saved.
 
 
 If provided (!=nullptr) the list of comment
 strings stored in the file will be returned.
 
 
 If provided (!=nullptr) the list of "object
 info" strings stored in the file will be returned.
 
 
 false on any error writing the file. To obtain more details on
 the error you can call getSavePLYErrorString()
 
C++: mrpt::opengl::PLY_Exporter::saveToPlyFile(const std::string &, bool, const class std::vector<std::string > &, const class std::vector<std::string > &) const --> bool

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class CWirelessPowerGridMap2D(CRandomFieldGridMap2D)
    CWirelessPowerGridMap2D represents a PDF of wifi concentrations over a 2D
area.
 
 There are a number of methods available to build the wifi grid-map,
depending on the value of
   "TMapRepresentation maptype" passed in the constructor (see
CRandomFieldGridMap2D for a discussion).
 
Update the map with insertIndividualReading() or insertObservation()
 
 
mrpt::maps::CRandomFieldGridMap2D, mrpt::maps::CMetricMap,
mrpt::containers::CDynamicGrid, The application icp-slam,
mrpt::maps::CMultiMetricMap
 
 
Method resolution order:
CWirelessPowerGridMap2D
CRandomFieldGridMap2D
CMetricMap
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
mrpt.pymrpt.mrpt.system.CObservable
mrpt.pymrpt.mrpt.Stringifyable
mrpt.pymrpt.mrpt.opengl.Visualizable
mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CWirelessPowerGridMap2D::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D) -> None
 
doc
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation) -> None
 
doc
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation, arg1: float) -> None
 
doc
 
4. __init__(self: mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation, arg1: float, arg2: float) -> None
 
doc
 
5. __init__(self: mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation, arg1: float, arg2: float, arg3: float) -> None
 
doc
 
6. __init__(self: mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation, arg1: float, arg2: float, arg3: float, arg4: float) -> None
 
doc
 
7. __init__(self: mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D, mapType: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float) -> None
 
8. __init__(self: mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D) -> None
 
9. __init__(self: mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D, arg0: mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D, : mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D) -> mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D
 
C++: mrpt::maps::CWirelessPowerGridMap2D::operator=(const class mrpt::maps::CWirelessPowerGridMap2D &) --> class mrpt::maps::CWirelessPowerGridMap2D &
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CWirelessPowerGridMap2D::clone() const --> class mrpt::rtti::CObject *
getVisualizationInto(...)
getVisualizationInto(self: mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D, outObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
Returns a 3D object representing the map  
 
C++: mrpt::maps::CWirelessPowerGridMap2D::getVisualizationInto(class mrpt::opengl::CSetOfObjects &) const --> void

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::CWirelessPowerGridMap2D::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::CWirelessPowerGridMap2D::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
insertionOptions

Data and other attributes defined here:
TInsertionOptions = <class 'mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D.TInsertionOptions'>
Parameters related with inserting observations into the map:
TMapDefinition = <class 'mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D.TMapDefinition'>
TMapDefinitionBase = <class 'mrpt.pymrpt.mrpt.maps.CWirelessPowerGridMap2D.TMapDefinitionBase'>

Methods inherited from CRandomFieldGridMap2D:
asString(...)
asString(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> str
 
Returns a short description of the map. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::asString() const --> std::string
cell2float(...)
cell2float(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, c: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> float
 
C++: mrpt::maps::CRandomFieldGridMap2D::cell2float(const struct mrpt::maps::TRandomFieldCell &) const --> float
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> None
 
Calls the base CMetricMap::clear
 Declared here to avoid ambiguity between the two clear() in both base
 classes.
 
C++: mrpt::maps::CRandomFieldGridMap2D::clear() --> void
compute3DMatchingRatio(...)
compute3DMatchingRatio(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, params: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> float
 
See docs in base class: in this class this always returns 0 
 
C++: mrpt::maps::CRandomFieldGridMap2D::compute3DMatchingRatio(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, const struct mrpt::maps::TMatchingRatioParams &) const --> float
enableProfiler(...)
enableProfiler(*args, **kwargs)
Overloaded function.
 
1. enableProfiler(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> None
 
2. enableProfiler(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, enable: bool) -> None
 
C++: mrpt::maps::CRandomFieldGridMap2D::enableProfiler(bool) --> void
enableVerbose(...)
enableVerbose(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, enable_verbose: bool) -> None
 
C++: mrpt::maps::CRandomFieldGridMap2D::enableVerbose(bool) --> void
getAs3DObject(...)
getAs3DObject(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, meanObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects, varObj: mrpt.pymrpt.mrpt.opengl.CSetOfObjects) -> None
 
Returns two 3D objects representing the mean and variance maps 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getAs3DObject(class mrpt::opengl::CSetOfObjects &, class mrpt::opengl::CSetOfObjects &) const --> void
getAsBitmapFile(...)
getAsBitmapFile(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_img: mrpt.pymrpt.mrpt.img.CImage) -> None
 
Returns an image just as described in  
 
C++: mrpt::maps::CRandomFieldGridMap2D::getAsBitmapFile(class mrpt::img::CImage &) const --> void
getAsMatrix(...)
getAsMatrix(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_mat: mrpt.pymrpt.mrpt.math.CMatrixDynamic_double_t) -> None
 
Like saveAsBitmapFile(), but returns the data in matrix form (first row
 in the matrix is the upper (y_max) part of the map) 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getAsMatrix(class mrpt::math::CMatrixDynamic<double> &) const --> void
getMapType(...)
getMapType(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation
 
Return the type of the random-field grid map, according to parameters
 passed on construction. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getMapType() --> enum mrpt::maps::CRandomFieldGridMap2D::TMapRepresentation
getMeanAndCov(...)
getMeanAndCov(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_means: mrpt::math::CVectorDynamic<double>, out_cov: mrpt.pymrpt.mrpt.math.CMatrixDynamic_double_t) -> None
 
Return the mean and covariance vector of the full Kalman filter estimate
 (works for all KF-based methods). 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getMeanAndCov(class mrpt::math::CVectorDynamic<double> &, class mrpt::math::CMatrixDynamic<double> &) const --> void
getMeanAndSTD(...)
getMeanAndSTD(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_means: mrpt::math::CVectorDynamic<double>, out_STD: mrpt::math::CVectorDynamic<double>) -> None
 
Return the mean and STD vectors of the full Kalman filter estimate
 (works for all KF-based methods). 
 
C++: mrpt::maps::CRandomFieldGridMap2D::getMeanAndSTD(class mrpt::math::CVectorDynamic<double> &, class mrpt::math::CVectorDynamic<double> &) const --> void
insertIndividualReading(...)
insertIndividualReading(*args, **kwargs)
Overloaded function.
 
1. insertIndividualReading(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, sensorReading: float, point: mrpt::math::TPoint2D_<double>) -> None
 
2. insertIndividualReading(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, sensorReading: float, point: mrpt::math::TPoint2D_<double>, update_map: bool) -> None
 
3. insertIndividualReading(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, sensorReading: float, point: mrpt::math::TPoint2D_<double>, update_map: bool, time_invariant: bool) -> None
 
4. insertIndividualReading(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, sensorReading: float, point: mrpt::math::TPoint2D_<double>, update_map: bool, time_invariant: bool, reading_stddev: float) -> None
 
Direct update of the map with a reading in a given position of the map,
 using
  the appropriate method according to mapType passed in the constructor.
 
 This is a direct way to update the map, an alternative to the generic
 insertObservation() method which works with mrpt::obs::CObservation
 objects.
 
C++: mrpt::maps::CRandomFieldGridMap2D::insertIndividualReading(const double, const struct mrpt::math::TPoint2D_<double> &, const bool, const bool, const double) --> void
isEmpty(...)
isEmpty(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> bool
 
Returns true if the map is empty/no observation has been inserted (in
 this class it always return false,
 unless redefined otherwise in base classes)
 
C++: mrpt::maps::CRandomFieldGridMap2D::isEmpty() const --> bool
isEnabledVerbose(...)
isEnabledVerbose(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> bool
 
C++: mrpt::maps::CRandomFieldGridMap2D::isEnabledVerbose() const --> bool
isProfilerEnabled(...)
isProfilerEnabled(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> bool
 
C++: mrpt::maps::CRandomFieldGridMap2D::isProfilerEnabled() const --> bool
predictMeasurement(...)
predictMeasurement(*args, **kwargs)
Overloaded function.
 
1. predictMeasurement(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, x: float, y: float, out_predict_response: float, out_predict_response_variance: float, do_sensor_normalization: bool) -> None
 
2. predictMeasurement(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, x: float, y: float, out_predict_response: float, out_predict_response_variance: float, do_sensor_normalization: bool, interp_method: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TGridInterpolationMethod) -> None
 
Returns the prediction of the measurement at some (x,y) coordinates, and
 its certainty (in the form of the expected variance).  
 
C++: mrpt::maps::CRandomFieldGridMap2D::predictMeasurement(const double, const double, double &, double &, bool, const enum mrpt::maps::CRandomFieldGridMap2D::TGridInterpolationMethod) --> void
resize(...)
resize(*args, **kwargs)
Overloaded function.
 
1. resize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, new_x_min: float, new_x_max: float, new_y_min: float, new_y_max: float, defaultValueNewCells: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> None
 
2. resize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, new_x_min: float, new_x_max: float, new_y_min: float, new_y_max: float, defaultValueNewCells: mrpt.pymrpt.mrpt.maps.TRandomFieldCell, additionalMarginMeters: float) -> None
 
Changes the size of the grid, maintaining previous contents. 
 setSize
 
C++: mrpt::maps::CRandomFieldGridMap2D::resize(double, double, double, double, const struct mrpt::maps::TRandomFieldCell &, double) --> void
saveAsBitmapFile(...)
saveAsBitmapFile(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, filName: str) -> None
 
Save the current map as a graphical file (BMP,PNG,...).
 The file format will be derived from the file extension (see
CImage::saveToFile )
  It depends on the map representation model:
                mrAchim: Each pixel is the ratio 
 
 
                mrKalmanFilter: Each pixel is the mean value of the Gaussian that
represents each cell.
 
 
 
         
 
C++: mrpt::maps::CRandomFieldGridMap2D::saveAsBitmapFile(const std::string &) const --> void
saveAsMatlab3DGraph(...)
saveAsMatlab3DGraph(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, filName: str) -> None
 
Save a matlab ".m" file which represents as 3D surfaces the mean and a
 given confidence level for the concentration of each cell.
  This method can only be called in a KF map model. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::saveAsMatlab3DGraph(const std::string &) const --> void
saveMetricMapRepresentationToFile(...)
saveMetricMapRepresentationToFile(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, filNamePrefix: str) -> None
 
The implementation in this class just calls all the corresponding method
 of the contained metric maps 
 
C++: mrpt::maps::CRandomFieldGridMap2D::saveMetricMapRepresentationToFile(const std::string &) const --> void
setCellsConnectivity(...)
setCellsConnectivity(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, new_connectivity_descriptor: mrpt::maps::CRandomFieldGridMap2D::ConnectivityDescriptor) -> None
 
Sets a custom object to define the connectivity between cells. Must call
 clear() or setSize() afterwards for the changes to take place. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::setCellsConnectivity(const class std::shared_ptr<struct mrpt::maps::CRandomFieldGridMap2D::ConnectivityDescriptor> &) --> void
setMeanAndSTD(...)
setMeanAndSTD(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, out_means: mrpt::math::CVectorDynamic<double>, out_STD: mrpt::math::CVectorDynamic<double>) -> None
 
Load the mean and STD vectors of the full Kalman filter estimate (works
 for all KF-based methods). 
 
C++: mrpt::maps::CRandomFieldGridMap2D::setMeanAndSTD(class mrpt::math::CVectorDynamic<double> &, class mrpt::math::CVectorDynamic<double> &) --> void
setSize(...)
setSize(*args, **kwargs)
Overloaded function.
 
1. setSize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float) -> None
 
2. setSize(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D, x_min: float, x_max: float, y_min: float, y_max: float, resolution: float, fill_value: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> None
 
Changes the size of the grid, erasing previous contents.
  
 
 Optional user-supplied object that
 will visit all grid cells to define their connectivity with neighbors and
 the strength of existing edges. If present, it overrides all options in
 insertionOptions
 
 
 resize
 
C++: mrpt::maps::CRandomFieldGridMap2D::setSize(const double, const double, const double, const double, const double, const struct mrpt::maps::TRandomFieldCell *) --> void
updateMapEstimation(...)
updateMapEstimation(self: mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D) -> None
 
Run the method-specific procedure required to ensure that the mean &
 variances are up-to-date with all inserted observations. 
 
C++: mrpt::maps::CRandomFieldGridMap2D::updateMapEstimation() --> void

Data and other attributes inherited from CRandomFieldGridMap2D:
ConnectivityDescriptor = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.ConnectivityDescriptor'>
Base class for user-supplied objects capable of describing cells
connectivity, used to build prior factors of the MRF graph. 
 
 
setCellsConnectivity()
TGridInterpolationMethod = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TGridInterpolationMethod'>
TInsertionOptionsCommon = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TInsertionOptionsCommon'>
Parameters common to any derived class.
 Derived classes should derive a new struct from this one, plus "public
CLoadableOptions",
 and call the internal_* methods where appropiate to deal with the
variables declared here.
 Derived classes instantions of their "TInsertionOptions" MUST set the
pointer "m_insertOptions_common" upon construction.
TMapRepresentation = <class 'mrpt.pymrpt.mrpt.maps.CRandomFieldGridMap2D.TMapRepresentation'>
gimBilinear = <TGridInterpolationMethod.gimBilinear: 1>
gimNearest = <TGridInterpolationMethod.gimNearest: 0>
mrAchim = <TMapRepresentation.mrKernelDM: 0>
mrGMRF_SD = <TMapRepresentation.mrGMRF_SD: 4>
mrKalmanApproximate = <TMapRepresentation.mrKalmanApproximate: 2>
mrKalmanFilter = <TMapRepresentation.mrKalmanFilter: 1>
mrKernelDM = <TMapRepresentation.mrKernelDM: 0>
mrKernelDMV = <TMapRepresentation.mrKernelDMV: 3>

Methods inherited from CMetricMap:
auxParticleFilterCleanUp(...)
auxParticleFilterCleanUp(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> None
 
This method is called at the end of each "prediction-update-map
 insertion" cycle within
 "mrpt::slam::CMetricMapBuilderRBPF::processActionObservation".
  This method should normally do nothing, but in some cases can be used
 to free auxiliary cached variables.
 
C++: mrpt::maps::CMetricMap::auxParticleFilterCleanUp() --> void
canComputeObservationLikelihood(...)
canComputeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observation.
 
 
 computeObservationLikelihood,
 genericMapParams.enableObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationLikelihood(const class mrpt::obs::CObservation &) const --> bool
canComputeObservationsLikelihood(...)
canComputeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
Returns true if this map is able to compute a sensible likelihood
 function for this observation (i.e. an occupancy grid map cannot with an
 image).
 See: 
 
 
 The observations.
 
 
 canComputeObservationLikelihood
 
C++: mrpt::maps::CMetricMap::canComputeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &) const --> bool
computeObservationLikelihood(...)
computeObservationLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Computes the log-likelihood of a given observation given an arbitrary
 robot 3D pose.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The observation.
 
 
 This method returns a log-likelihood.
 
 
 Used in particle filter algorithms, see: CMultiMetricMapPDF::update
 
C++: mrpt::maps::CMetricMap::computeObservationLikelihood(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D &) const --> double
computeObservationsLikelihood(...)
computeObservationsLikelihood(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, takenFrom: mrpt.pymrpt.mrpt.poses.CPose3D) -> float
 
Returns the sum of the log-likelihoods of each individual observation
 within a mrpt::obs::CSensoryFrame.
 See: 
 
 
 The robot's pose the observation is supposed to be taken
 from.
 
 
 The set of observations in a CSensoryFrame.
 
 
 This method returns a log-likelihood.
 
 
 canComputeObservationsLikelihood
 
C++: mrpt::maps::CMetricMap::computeObservationsLikelihood(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D &) --> double
determineMatching2D(...)
determineMatching2D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose2D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matching between this and another 2D point map, which
includes finding:
   - The set of points pairs in each map
   - The mean squared distance between corresponding pairs.
 
   The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
   This method is the most time critical one into ICP-like algorithms.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching2D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose2D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
determineMatching3D(...)
determineMatching3D(self: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMap: mrpt.pymrpt.mrpt.maps.CMetricMap, otherMapPose: mrpt.pymrpt.mrpt.poses.CPose3D, correspondences: mrpt.pymrpt.mrpt.tfest.TMatchingPairListTempl_float_t, params: mrpt.pymrpt.mrpt.maps.TMatchingParams, extraResults: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None
 
Computes the matchings between this and another 3D points map - method
used in 3D-ICP.
  This method finds the set of point pairs in each map.
 
  The method is the most time critical one into ICP-like algorithms.
 
  The algorithm is:
                - For each point in "otherMap":
                        - Transform the point according to otherMapPose
                        - Search with a KD-TREE the closest correspondences in "this"
map.
                        - Add to the set of candidate matchings, if it passes all the
thresholds in params.
 
 
        [IN] The other map to compute the matching with.
 
 
    [IN] The pose of the other map as seen from
"this".
 
 
          [IN] Parameters for the determination of
pairings.
 
 
 [OUT] The detected matchings pairs.
 
 
    [OUT] Other results.
 
 
 compute3DMatchingRatio
 
C++: mrpt::maps::CMetricMap::determineMatching3D(const class mrpt::maps::CMetricMap *, const class mrpt::poses::CPose3D &, class mrpt::tfest::TMatchingPairListTempl<float> &, const struct mrpt::maps::TMatchingParams &, struct mrpt::maps::TMatchingExtraResults &) const --> void
getAsSimplePointsMap(...)
getAsSimplePointsMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap) -> mrpt::maps::CSimplePointsMap
 
C++: mrpt::maps::CMetricMap::getAsSimplePointsMap() --> class mrpt::maps::CSimplePointsMap *
insertObs(...)
insertObs(*args, **kwargs)
Overloaded function.
 
1. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation) -> bool
 
2. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, obs: mrpt.pymrpt.mrpt.obs.CObservation, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CObservation &, const class mrpt::poses::CPose3D *) --> bool
 
3. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame) -> bool
 
4. insertObs(self: mrpt.pymrpt.mrpt.maps.CMetricMap, sf: mrpt::obs::CSensoryFrame, robotPose: mrpt.pymrpt.mrpt.poses.CPose3D) -> bool
 
C++: mrpt::maps::CMetricMap::insertObs(const class mrpt::obs::CSensoryFrame &, const class mrpt::poses::CPose3D *) --> bool
loadFromProbabilisticPosesAndObservations(...)
loadFromProbabilisticPosesAndObservations(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 
Load the map contents from a CSimpleMap object, erasing all previous
 content of the map. This is done invoking `insertObservation()` for each
 observation at the mean 3D robot pose of each pose-observations pair in
 the CSimpleMap object.
 
 
 insertObservation, CSimpleMap
 
 
 std::exception Some internal steps in invoked methods can
 raise exceptions on invalid parameters, etc...
 
C++: mrpt::maps::CMetricMap::loadFromProbabilisticPosesAndObservations(const class mrpt::maps::CSimpleMap &) --> void
loadFromSimpleMap(...)
loadFromSimpleMap(self: mrpt.pymrpt.mrpt.maps.CMetricMap, Map: mrpt::maps::CSimpleMap) -> None
 

 
C++: mrpt::maps::CMetricMap::loadFromSimpleMap(const class mrpt::maps::CSimpleMap &) --> void
squareDistanceToClosestCorrespondence(...)
squareDistanceToClosestCorrespondence(self: mrpt.pymrpt.mrpt.maps.CMetricMap, x0: float, y0: float) -> float
 
Returns the square distance from the 2D point (x0,y0) to the closest
 correspondence in the map. 
 
C++: mrpt::maps::CMetricMap::squareDistanceToClosestCorrespondence(float, float) const --> float

Data descriptors inherited from CMetricMap:
genericMapParams

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Methods inherited from mrpt.pymrpt.mrpt.opengl.Visualizable:
getVisualization(...)
getVisualization(self: mrpt.pymrpt.mrpt.opengl.Visualizable) -> mrpt::opengl::CSetOfObjects
 
Creates 3D primitives representing this objects.
 This is equivalent to getVisualizationInto() but creating, and returning
 by value, a new rpt::opengl::CSetOfObjects::Ptr shared pointer.
 
 
 getVisualizationInto()
 
C++: mrpt::opengl::Visualizable::getVisualization() const --> class std::shared_ptr<class mrpt::opengl::CSetOfObjects>

Methods inherited from mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t:
cellByIndex(...)
cellByIndex(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, cx: int, cy: int) -> mrpt::maps::TRandomFieldCell
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::cellByIndex(unsigned int, unsigned int) --> struct mrpt::maps::TRandomFieldCell *
cellByPos(...)
cellByPos(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, x: float, y: float) -> mrpt::maps::TRandomFieldCell
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::cellByPos(double, double) --> struct mrpt::maps::TRandomFieldCell *
fill(...)
fill(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, value: mrpt::maps::TRandomFieldCell) -> None
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::fill(const struct mrpt::maps::TRandomFieldCell &) --> void
getResolution(...)
getResolution(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getResolution() const --> double
getSizeX(...)
getSizeX(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getSizeX() const --> size_t
getSizeY(...)
getSizeY(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getSizeY() const --> size_t
getXMax(...)
getXMax(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getXMax() const --> double
getXMin(...)
getXMin(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getXMin() const --> double
getYMax(...)
getYMax(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getYMax() const --> double
getYMin(...)
getYMin(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::getYMin() const --> double
idx2cxcy(...)
idx2cxcy(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, idx: int, cx: int, cy: int) -> None
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::idx2cxcy(int, int &, int &) const --> void
idx2x(...)
idx2x(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, cx: int) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::idx2x(int) const --> double
idx2y(...)
idx2y(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, cy: int) -> float
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::idx2y(int) const --> double
saveToTextFile(...)
saveToTextFile(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, fileName: str) -> bool
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::saveToTextFile(const std::string &) const --> bool
x2idx(...)
x2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, x: float) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::x2idx(double) const --> int
xy2idx(...)
xy2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, x: float, y: float) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::xy2idx(double, double) const --> int
y2idx(...)
y2idx(self: mrpt.pymrpt.mrpt.containers.CDynamicGrid_mrpt_maps_TRandomFieldCell_t, y: float) -> int
 
C++: mrpt::containers::CDynamicGrid<mrpt::maps::TRandomFieldCell>::y2idx(double) const --> int

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class OccGridCellTraits(pybind11_builtins.pybind11_object)
    
Method resolution order:
OccGridCellTraits
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
__init__(...)
__init__(self: mrpt.pymrpt.mrpt.maps.OccGridCellTraits) -> None

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class THeightGridmapCell(pybind11_builtins.pybind11_object)
    The contents of each cell in a CHeightGridMap2D map
 
 
Method resolution order:
THeightGridmapCell
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
__init__(...)
__init__(self: mrpt.pymrpt.mrpt.maps.THeightGridmapCell) -> None

Data descriptors defined here:
h
u
v
var
w

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class TMapGenericParams(mrpt.pymrpt.mrpt.config.CLoadableOptions, mrpt.pymrpt.mrpt.serialization.CSerializable)
    Common params to all maps derived from mrpt::maps::CMetricMap
 
 
Method resolution order:
TMapGenericParams
mrpt.pymrpt.mrpt.config.CLoadableOptions
mrpt.pymrpt.mrpt.serialization.CSerializable
mrpt.pymrpt.mrpt.rtti.CObject
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
GetRuntimeClass(...)
GetRuntimeClass(self: mrpt.pymrpt.mrpt.maps.TMapGenericParams) -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::TMapGenericParams::GetRuntimeClass() const --> const struct mrpt::rtti::TRuntimeClassId *
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.TMapGenericParams, arg0: mrpt.pymrpt.mrpt.maps.TMapGenericParams) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.TMapGenericParams, arg0: mrpt.pymrpt.mrpt.maps.TMapGenericParams) -> None
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.TMapGenericParams) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.TMapGenericParams, : mrpt.pymrpt.mrpt.maps.TMapGenericParams) -> mrpt.pymrpt.mrpt.maps.TMapGenericParams
 
C++: mrpt::maps::TMapGenericParams::operator=(const class mrpt::maps::TMapGenericParams &) --> class mrpt::maps::TMapGenericParams &
clone(...)
clone(self: mrpt.pymrpt.mrpt.maps.TMapGenericParams) -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::TMapGenericParams::clone() const --> class mrpt::rtti::CObject *
loadFromConfigFile(...)
loadFromConfigFile(self: mrpt.pymrpt.mrpt.maps.TMapGenericParams, source: mrpt::config::CConfigFileBase, sectionNamePrefix: str) -> None
 
C++: mrpt::maps::TMapGenericParams::loadFromConfigFile(const class mrpt::config::CConfigFileBase &, const std::string &) --> void
saveToConfigFile(...)
saveToConfigFile(self: mrpt.pymrpt.mrpt.maps.TMapGenericParams, target: mrpt::config::CConfigFileBase, section: str) -> None
 
C++: mrpt::maps::TMapGenericParams::saveToConfigFile(class mrpt::config::CConfigFileBase &, const std::string &) const --> void

Static methods defined here:
CreateObject(...) from builtins.PyCapsule
CreateObject() -> mrpt.pymrpt.mrpt.rtti.CObject
 
C++: mrpt::maps::TMapGenericParams::CreateObject() --> class std::shared_ptr<class mrpt::rtti::CObject>
GetRuntimeClassIdStatic(...) from builtins.PyCapsule
GetRuntimeClassIdStatic() -> mrpt.pymrpt.mrpt.rtti.TRuntimeClassId
 
C++: mrpt::maps::TMapGenericParams::GetRuntimeClassIdStatic() --> const struct mrpt::rtti::TRuntimeClassId &

Data descriptors defined here:
enableObservationInsertion
enableObservationLikelihood
enableSaveAs3DObject

Methods inherited from mrpt.pymrpt.mrpt.config.CLoadableOptions:
dumpToConsole(...)
dumpToConsole(self: mrpt.pymrpt.mrpt.config.CLoadableOptions) -> None
 
Just like  but sending the text to the console
 (std::cout) 
 
C++: mrpt::config::CLoadableOptions::dumpToConsole() const --> void
loadFromConfigFileName(...)
loadFromConfigFileName(self: mrpt.pymrpt.mrpt.config.CLoadableOptions, config_file: str, section: str) -> None
 
Behaves like loadFromConfigFile, but you can pass directly a file name
 and a temporary CConfigFile object will be created automatically to load
 the file.
 
 
 loadFromConfigFile
 
C++: mrpt::config::CLoadableOptions::loadFromConfigFileName(const std::string &, const std::string &) --> void
saveToConfigFileName(...)
saveToConfigFileName(self: mrpt.pymrpt.mrpt.config.CLoadableOptions, config_file: str, section: str) -> None
 
Behaves like saveToConfigFile, but you can pass directly a file name and
 a temporary CConfigFile object will be created automatically to save the
 file.
 
 
 saveToConfigFile, loadFromConfigFileName
 
C++: mrpt::config::CLoadableOptions::saveToConfigFileName(const std::string &, const std::string &) const --> void

Methods inherited from mrpt.pymrpt.mrpt.rtti.CObject:
duplicateGetSmartPtr(...)
duplicateGetSmartPtr(self: mrpt.pymrpt.mrpt.rtti.CObject) -> mrpt.pymrpt.mrpt.rtti.CObject
 
Makes a deep copy of the object and returns a smart pointer to it 
 
C++: mrpt::rtti::CObject::duplicateGetSmartPtr() const --> class std::shared_ptr<class mrpt::rtti::CObject>

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class TMatchingExtraResults(pybind11_builtins.pybind11_object)
    Additional results from the determination of matchings between point clouds,
etc., apart from the pairings themselves 
 
CMetricMap::determineMatching2D,
CMetricMap::determineMatching3D
 
 
Method resolution order:
TMatchingExtraResults
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
__init__(...)
__init__(self: mrpt.pymrpt.mrpt.maps.TMatchingExtraResults) -> None

Data descriptors defined here:
correspondencesRatio
sumSqrDist

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class TMatchingParams(pybind11_builtins.pybind11_object)
    Parameters for the determination of matchings between point clouds, etc. 
 
CMetricMap::determineMatching2D, CMetricMap::determineMatching3D
 
 
Method resolution order:
TMatchingParams
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
__init__(...)
__init__(self: mrpt.pymrpt.mrpt.maps.TMatchingParams) -> None

Data descriptors defined here:
angularDistPivotPoint
decimation_other_map_points
maxAngularDistForCorrespondence
maxDistForCorrespondence
offset_other_map_points
onlyKeepTheClosest
onlyUniqueRobust

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class TMatchingRatioParams(pybind11_builtins.pybind11_object)
    Parameters for CMetricMap::compute3DMatchingRatio()
 
 
Method resolution order:
TMatchingRatioParams
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams, arg0: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.TMatchingRatioParams, : mrpt.pymrpt.mrpt.maps.TMatchingRatioParams) -> mrpt.pymrpt.mrpt.maps.TMatchingRatioParams
 
C++: mrpt::maps::TMatchingRatioParams::operator=(const struct mrpt::maps::TMatchingRatioParams &) --> struct mrpt::maps::TMatchingRatioParams &

Data descriptors defined here:
maxDistForCorr
maxMahaDistForCorr

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class TRandomFieldCell(pybind11_builtins.pybind11_object)
    The contents of each cell in a CRandomFieldGridMap2D map.
 
 
Method resolution order:
TRandomFieldCell
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> None
 
doc
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.TRandomFieldCell, kfmean_dm_mean: float) -> None
 
doc
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.TRandomFieldCell, kfmean_dm_mean: float, kfstd_dmmeanw: float) -> None
dm_mean(...)
dm_mean(self: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> float
 
[Kernel-methods only] The cumulative weighted readings of this cell
 
C++: mrpt::maps::TRandomFieldCell::dm_mean() --> double &
dm_mean_w(...)
dm_mean_w(self: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> float
 
[Kernel-methods only] The cumulative weights (concentration = alpha
 * dm_mean / dm_mean_w + (1-alpha)*r0 ) 
 
C++: mrpt::maps::TRandomFieldCell::dm_mean_w() --> double &
gmrf_mean(...)
gmrf_mean(self: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> float
 
[GMRF only] The mean value of this cell 
 
C++: mrpt::maps::TRandomFieldCell::gmrf_mean() --> double &
gmrf_std(...)
gmrf_std(self: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> float
 
C++: mrpt::maps::TRandomFieldCell::gmrf_std() --> double &
kf_mean(...)
kf_mean(self: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> float
 
[KF-methods only] The mean value of this cell 
 
C++: mrpt::maps::TRandomFieldCell::kf_mean() --> double &
kf_std(...)
kf_std(self: mrpt.pymrpt.mrpt.maps.TRandomFieldCell) -> float
 
[KF-methods only] The standard deviation value of this cell 
 
C++: mrpt::maps::TRandomFieldCell::kf_std() --> double &

Data descriptors defined here:
dmv_var_mean
last_updated
param1_
param2_
updated_std

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class TRandomFieldVoxel(pybind11_builtins.pybind11_object)
    
Method resolution order:
TRandomFieldVoxel
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.TRandomFieldVoxel) -> None
 
doc
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.TRandomFieldVoxel, _mean_value: float) -> None
 
doc
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.TRandomFieldVoxel, _mean_value: float, _stddev_value: float) -> None

Data descriptors defined here:
mean_value
stddev_value

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class TSetOfMetricMapInitializers(mrpt.pymrpt.mrpt.config.CLoadableOptions)
    A set of TMetricMapInitializer structures, passed to the constructor
CMultiMetricMap::CMultiMetricMap
 See the comments for TSetOfMetricMapInitializers::loadFromConfigFile, and
"CMultiMetricMap::setListOfMaps" for
  effectively creating the list of desired maps.
 
 
CMultiMetricMap::CMultiMetricMapCLoadableOptions
 
 
Method resolution order:
TSetOfMetricMapInitializers
mrpt.pymrpt.mrpt.config.CLoadableOptions
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.TSetOfMetricMapInitializers) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.TSetOfMetricMapInitializers, arg0: mrpt.pymrpt.mrpt.maps.TSetOfMetricMapInitializers) -> None
 
3. __init__(self: mrpt.pymrpt.mrpt.maps.TSetOfMetricMapInitializers, arg0: mrpt.pymrpt.mrpt.maps.TSetOfMetricMapInitializers) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.TSetOfMetricMapInitializers, : mrpt.pymrpt.mrpt.maps.TSetOfMetricMapInitializers) -> mrpt.pymrpt.mrpt.maps.TSetOfMetricMapInitializers
 
C++: mrpt::maps::TSetOfMetricMapInitializers::operator=(const class mrpt::maps::TSetOfMetricMapInitializers &) --> class mrpt::maps::TSetOfMetricMapInitializers &
clear(...)
clear(self: mrpt.pymrpt.mrpt.maps.TSetOfMetricMapInitializers) -> None
 
C++: mrpt::maps::TSetOfMetricMapInitializers::clear() --> void
loadFromConfigFile(...)
loadFromConfigFile(self: mrpt.pymrpt.mrpt.maps.TSetOfMetricMapInitializers, source: mrpt::config::CConfigFileBase, sectionName: str) -> None
 
Loads the configuration for the set of internal maps from a textual
definition in an INI-like file.
  The format of the ini file is defined in CConfigFile. The list
of maps and their options
   will be loaded from a handle of sections:
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Where:
                - ##: Represents the index of the map (e.g. "00","01",...)
                - By default, the variables into each "TOptions" structure of the
maps
are defined in textual form by the same name of the corresponding C++
variable (e.g. "float resolution;" -> "resolution=0.10")
 
 
 Examples of map definitions can be found in the '.ini' files
provided in the demo directories: "share/mrpt/config-files/"
 
C++: mrpt::maps::TSetOfMetricMapInitializers::loadFromConfigFile(const class mrpt::config::CConfigFileBase &, const std::string &) --> void
saveToConfigFile(...)
saveToConfigFile(self: mrpt.pymrpt.mrpt.maps.TSetOfMetricMapInitializers, target: mrpt::config::CConfigFileBase, section: str) -> None
 
C++: mrpt::maps::TSetOfMetricMapInitializers::saveToConfigFile(class mrpt::config::CConfigFileBase &, const std::string &) const --> void
size(...)
size(self: mrpt.pymrpt.mrpt.maps.TSetOfMetricMapInitializers) -> int
 
C++: mrpt::maps::TSetOfMetricMapInitializers::size() const --> size_t

Methods inherited from mrpt.pymrpt.mrpt.config.CLoadableOptions:
dumpToConsole(...)
dumpToConsole(self: mrpt.pymrpt.mrpt.config.CLoadableOptions) -> None
 
Just like  but sending the text to the console
 (std::cout) 
 
C++: mrpt::config::CLoadableOptions::dumpToConsole() const --> void
loadFromConfigFileName(...)
loadFromConfigFileName(self: mrpt.pymrpt.mrpt.config.CLoadableOptions, config_file: str, section: str) -> None
 
Behaves like loadFromConfigFile, but you can pass directly a file name
 and a temporary CConfigFile object will be created automatically to load
 the file.
 
 
 loadFromConfigFile
 
C++: mrpt::config::CLoadableOptions::loadFromConfigFileName(const std::string &, const std::string &) --> void
saveToConfigFileName(...)
saveToConfigFileName(self: mrpt.pymrpt.mrpt.config.CLoadableOptions, config_file: str, section: str) -> None
 
Behaves like saveToConfigFile, but you can pass directly a file name and
 a temporary CConfigFile object will be created automatically to save the
 file.
 
 
 saveToConfigFile, loadFromConfigFileName
 
C++: mrpt::config::CLoadableOptions::saveToConfigFileName(const std::string &, const std::string &) const --> void

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class mrptEventMetricMapClear(mrpt.pymrpt.mrpt.system.mrptEvent)
    Event emitted by a metric up upon call of clear()
 
 
CMetricMap
 
 
Method resolution order:
mrptEventMetricMapClear
mrpt.pymrpt.mrpt.system.mrptEvent
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
__init__(...)
__init__(self: mrpt.pymrpt.mrpt.maps.mrptEventMetricMapClear, smap: mrpt::maps::CMetricMap) -> None
assign(...)
assign(self: mrpt.pymrpt.mrpt.maps.mrptEventMetricMapClear, : mrpt.pymrpt.mrpt.maps.mrptEventMetricMapClear) -> mrpt.pymrpt.mrpt.maps.mrptEventMetricMapClear
 
C++: mrpt::maps::mrptEventMetricMapClear::operator=(const class mrpt::maps::mrptEventMetricMapClear &) --> class mrpt::maps::mrptEventMetricMapClear &

Data descriptors inherited from mrpt.pymrpt.mrpt.system.mrptEvent:
timestamp

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.

 
class mrptEventMetricMapInsert(mrpt.pymrpt.mrpt.system.mrptEvent)
    Event emitted by a metric up upon a succesful call to insertObservation()
 
 
CMetricMap
 
 
Method resolution order:
mrptEventMetricMapInsert
mrpt.pymrpt.mrpt.system.mrptEvent
pybind11_builtins.pybind11_object
builtins.object

Methods defined here:
__init__(...)
__init__(*args, **kwargs)
Overloaded function.
 
1. __init__(self: mrpt.pymrpt.mrpt.maps.mrptEventMetricMapInsert, arg0: mrpt.pymrpt.mrpt.maps.mrptEventMetricMapInsert) -> None
 
2. __init__(self: mrpt.pymrpt.mrpt.maps.mrptEventMetricMapInsert, arg0: mrpt.pymrpt.mrpt.maps.mrptEventMetricMapInsert) -> None

Readonly properties defined here:
inserted_robotPose

Methods inherited from mrpt.pymrpt.mrpt.system.mrptEvent:
assign(...)
assign(self: mrpt.pymrpt.mrpt.system.mrptEvent, : mrpt.pymrpt.mrpt.system.mrptEvent) -> mrpt.pymrpt.mrpt.system.mrptEvent
 
C++: mrpt::system::mrptEvent::operator=(const class mrpt::system::mrptEvent &) --> class mrpt::system::mrptEvent &

Data descriptors inherited from mrpt.pymrpt.mrpt.system.mrptEvent:
timestamp

Static methods inherited from pybind11_builtins.pybind11_object:
__new__(*args, **kwargs) from pybind11_builtins.pybind11_type
Create and return a new object.  See help(type) for accurate signature.