| |
- mrpt.pymrpt.mrpt.config.CLoadableOptions(pybind11_builtins.pybind11_object)
-
- TKF_options
- pybind11_builtins.pybind11_object(builtins.object)
-
- CKalmanFilterCapable_3UL_2UL_2UL_3UL_double_t
- CKalmanFilterCapable_7UL_3UL_3UL_7UL_double_t
- CParticleFilter
- CParticleFilterCapable
-
- CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t
- CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t
- CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t
- CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t
- CParticleFilterData_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t
- CParticleFilterData_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t
- CParticleFilterData_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t
- CParticleFilterData_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t
- CProbabilityParticleBase
-
- CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t
- CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t
- CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t
- CRejectionSamplingCapable_mrpt_poses_CPose2D_mrpt_bayes_particle_storage_mode_POINTER_t
- TKFMethod
- particle_storage_mode
class CKalmanFilterCapable_3UL_2UL_2UL_3UL_double_t(pybind11_builtins.pybind11_object) |
| |
- Method resolution order:
- CKalmanFilterCapable_3UL_2UL_2UL_3UL_double_t
- pybind11_builtins.pybind11_object
- builtins.object
Methods defined here:
- OnNewLandmarkAddedToMap(...)
- OnNewLandmarkAddedToMap(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_3UL_2UL_2UL_3UL_double_t, in_obsIdx: int, in_idxNewFeat: int) -> None
C++: mrpt::bayes::CKalmanFilterCapable<3, 2, 2, 3>::OnNewLandmarkAddedToMap(size_t, size_t) --> void
- OnNormalizeStateVector(...)
- OnNormalizeStateVector(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_3UL_2UL_2UL_3UL_double_t) -> None
C++: mrpt::bayes::CKalmanFilterCapable<3, 2, 2, 3>::OnNormalizeStateVector() --> void
- OnPostIteration(...)
- OnPostIteration(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_3UL_2UL_2UL_3UL_double_t) -> None
C++: mrpt::bayes::CKalmanFilterCapable<3, 2, 2, 3>::OnPostIteration() --> void
- __init__(self, /, *args, **kwargs)
- Initialize self. See help(type(self)) for accurate signature.
- getLandmarkCov(...)
- getLandmarkCov(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_3UL_2UL_2UL_3UL_double_t, idx: int, feat_cov: mrpt.pymrpt.mrpt.math.CMatrixFixed_double_2UL_2UL_t) -> None
C++: mrpt::bayes::CKalmanFilterCapable<3, 2, 2, 3>::getLandmarkCov(size_t, class mrpt::math::CMatrixFixed<double, 2, 2> &) const --> void
- getLandmarkMean(...)
- getLandmarkMean(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_3UL_2UL_2UL_3UL_double_t, idx: int, feat: mrpt.pymrpt.mrpt.math.CMatrixFixed_double_2UL_1UL_t) -> None
C++: mrpt::bayes::CKalmanFilterCapable<3, 2, 2, 3>::getLandmarkMean(size_t, class mrpt::math::CMatrixFixed<double, 2, 1> &) const --> void
- getNumberOfLandmarksInTheMap(...)
- getNumberOfLandmarksInTheMap(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_3UL_2UL_2UL_3UL_double_t) -> int
C++: mrpt::bayes::CKalmanFilterCapable<3, 2, 2, 3>::getNumberOfLandmarksInTheMap() const --> size_t
- getProfiler(...)
- getProfiler(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_3UL_2UL_2UL_3UL_double_t) -> mrpt.pymrpt.mrpt.system.CTimeLogger
C++: mrpt::bayes::CKalmanFilterCapable<3, 2, 2, 3>::getProfiler() --> class mrpt::system::CTimeLogger &
- getStateVectorLength(...)
- getStateVectorLength(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_3UL_2UL_2UL_3UL_double_t) -> int
C++: mrpt::bayes::CKalmanFilterCapable<3, 2, 2, 3>::getStateVectorLength() const --> size_t
- internal_getPkk(...)
- internal_getPkk(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_3UL_2UL_2UL_3UL_double_t) -> mrpt.pymrpt.mrpt.math.CMatrixDynamic_double_t
C++: mrpt::bayes::CKalmanFilterCapable<3, 2, 2, 3>::internal_getPkk() --> class mrpt::math::CMatrixDynamic<double> &
- internal_getXkk(...)
- internal_getXkk(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_3UL_2UL_2UL_3UL_double_t) -> mrpt::math::CVectorDynamic<double>
C++: mrpt::bayes::CKalmanFilterCapable<3, 2, 2, 3>::internal_getXkk() --> class mrpt::math::CVectorDynamic<double> &
- isMapEmpty(...)
- isMapEmpty(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_3UL_2UL_2UL_3UL_double_t) -> bool
C++: mrpt::bayes::CKalmanFilterCapable<3, 2, 2, 3>::isMapEmpty() const --> bool
Static methods defined here:
- get_action_size(...) from builtins.PyCapsule
- get_action_size() -> int
C++: mrpt::bayes::CKalmanFilterCapable<3, 2, 2, 3>::get_action_size() --> size_t
- get_feature_size(...) from builtins.PyCapsule
- get_feature_size() -> int
C++: mrpt::bayes::CKalmanFilterCapable<3, 2, 2, 3>::get_feature_size() --> size_t
- get_observation_size(...) from builtins.PyCapsule
- get_observation_size() -> int
C++: mrpt::bayes::CKalmanFilterCapable<3, 2, 2, 3>::get_observation_size() --> size_t
- get_vehicle_size(...) from builtins.PyCapsule
- get_vehicle_size() -> int
C++: mrpt::bayes::CKalmanFilterCapable<3, 2, 2, 3>::get_vehicle_size() --> size_t
Readonly properties defined here:
- KF_options
Static methods inherited from pybind11_builtins.pybind11_object:
- __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
- Create and return a new object. See help(type) for accurate signature.
|
class CKalmanFilterCapable_7UL_3UL_3UL_7UL_double_t(pybind11_builtins.pybind11_object) |
| |
- Method resolution order:
- CKalmanFilterCapable_7UL_3UL_3UL_7UL_double_t
- pybind11_builtins.pybind11_object
- builtins.object
Methods defined here:
- OnNewLandmarkAddedToMap(...)
- OnNewLandmarkAddedToMap(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_7UL_3UL_3UL_7UL_double_t, in_obsIdx: int, in_idxNewFeat: int) -> None
C++: mrpt::bayes::CKalmanFilterCapable<7, 3, 3, 7>::OnNewLandmarkAddedToMap(size_t, size_t) --> void
- OnNormalizeStateVector(...)
- OnNormalizeStateVector(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_7UL_3UL_3UL_7UL_double_t) -> None
C++: mrpt::bayes::CKalmanFilterCapable<7, 3, 3, 7>::OnNormalizeStateVector() --> void
- OnPostIteration(...)
- OnPostIteration(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_7UL_3UL_3UL_7UL_double_t) -> None
C++: mrpt::bayes::CKalmanFilterCapable<7, 3, 3, 7>::OnPostIteration() --> void
- __init__(self, /, *args, **kwargs)
- Initialize self. See help(type(self)) for accurate signature.
- getLandmarkCov(...)
- getLandmarkCov(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_7UL_3UL_3UL_7UL_double_t, idx: int, feat_cov: mrpt.pymrpt.mrpt.math.CMatrixFixed_double_3UL_3UL_t) -> None
C++: mrpt::bayes::CKalmanFilterCapable<7, 3, 3, 7>::getLandmarkCov(size_t, class mrpt::math::CMatrixFixed<double, 3, 3> &) const --> void
- getLandmarkMean(...)
- getLandmarkMean(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_7UL_3UL_3UL_7UL_double_t, idx: int, feat: mrpt.pymrpt.mrpt.math.CMatrixFixed_double_3UL_1UL_t) -> None
C++: mrpt::bayes::CKalmanFilterCapable<7, 3, 3, 7>::getLandmarkMean(size_t, class mrpt::math::CMatrixFixed<double, 3, 1> &) const --> void
- getNumberOfLandmarksInTheMap(...)
- getNumberOfLandmarksInTheMap(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_7UL_3UL_3UL_7UL_double_t) -> int
C++: mrpt::bayes::CKalmanFilterCapable<7, 3, 3, 7>::getNumberOfLandmarksInTheMap() const --> size_t
- getProfiler(...)
- getProfiler(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_7UL_3UL_3UL_7UL_double_t) -> mrpt.pymrpt.mrpt.system.CTimeLogger
C++: mrpt::bayes::CKalmanFilterCapable<7, 3, 3, 7>::getProfiler() --> class mrpt::system::CTimeLogger &
- getStateVectorLength(...)
- getStateVectorLength(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_7UL_3UL_3UL_7UL_double_t) -> int
C++: mrpt::bayes::CKalmanFilterCapable<7, 3, 3, 7>::getStateVectorLength() const --> size_t
- internal_getPkk(...)
- internal_getPkk(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_7UL_3UL_3UL_7UL_double_t) -> mrpt.pymrpt.mrpt.math.CMatrixDynamic_double_t
C++: mrpt::bayes::CKalmanFilterCapable<7, 3, 3, 7>::internal_getPkk() --> class mrpt::math::CMatrixDynamic<double> &
- internal_getXkk(...)
- internal_getXkk(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_7UL_3UL_3UL_7UL_double_t) -> mrpt::math::CVectorDynamic<double>
C++: mrpt::bayes::CKalmanFilterCapable<7, 3, 3, 7>::internal_getXkk() --> class mrpt::math::CVectorDynamic<double> &
- isMapEmpty(...)
- isMapEmpty(self: mrpt.pymrpt.mrpt.bayes.CKalmanFilterCapable_7UL_3UL_3UL_7UL_double_t) -> bool
C++: mrpt::bayes::CKalmanFilterCapable<7, 3, 3, 7>::isMapEmpty() const --> bool
Static methods defined here:
- get_action_size(...) from builtins.PyCapsule
- get_action_size() -> int
C++: mrpt::bayes::CKalmanFilterCapable<7, 3, 3, 7>::get_action_size() --> size_t
- get_feature_size(...) from builtins.PyCapsule
- get_feature_size() -> int
C++: mrpt::bayes::CKalmanFilterCapable<7, 3, 3, 7>::get_feature_size() --> size_t
- get_observation_size(...) from builtins.PyCapsule
- get_observation_size() -> int
C++: mrpt::bayes::CKalmanFilterCapable<7, 3, 3, 7>::get_observation_size() --> size_t
- get_vehicle_size(...) from builtins.PyCapsule
- get_vehicle_size() -> int
C++: mrpt::bayes::CKalmanFilterCapable<7, 3, 3, 7>::get_vehicle_size() --> size_t
Readonly properties defined here:
- KF_options
Static methods inherited from pybind11_builtins.pybind11_object:
- __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
- Create and return a new object. See help(type) for accurate signature.
|
class CParticleFilter(pybind11_builtins.pybind11_object) |
|
This class acts as a common interface to the different interfaces (see
CParticleFilter::TParticleFilterAlgorithm) any bayes::CParticleFilterCapable
class can implement: it is the invoker of particle filter algorithms.
The particle filter is executed on a probability density function (PDF)
described by a CParticleFilterCapable object, passed in the constructor or
alternatively through the CParticleFilter::executeOn method.
For a complete example and further details, see the
*href="http://www.mrpt.org/Particle_Filter_Tutorial" >Particle Filter
tutorial.
The basic SIR algorithm (pfStandardProposal) consists of:
- Execute a prediction with the given "action".
- Update the weights of the particles using the likelihood of the
"observation".
- Normalize weights.
- Perform resampling if the ESS is below the threshold options.BETA.
mrpt::poses::CPoseParticlesPDF |
|
- Method resolution order:
- CParticleFilter
- pybind11_builtins.pybind11_object
- builtins.object
Methods defined here:
- __init__(...)
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilter) -> None
2. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilter, arg0: mrpt.pymrpt.mrpt.bayes.CParticleFilter) -> None
- assign(...)
- assign(self: mrpt.pymrpt.mrpt.bayes.CParticleFilter, : mrpt.pymrpt.mrpt.bayes.CParticleFilter) -> mrpt.pymrpt.mrpt.bayes.CParticleFilter
C++: mrpt::bayes::CParticleFilter::operator=(const class mrpt::bayes::CParticleFilter &) --> class mrpt::bayes::CParticleFilter &
- executeOn(...)
- executeOn(*args, **kwargs)
Overloaded function.
1. executeOn(self: mrpt.pymrpt.mrpt.bayes.CParticleFilter, obj: mrpt::bayes::CParticleFilterCapable, action: mrpt::obs::CActionCollection, observation: mrpt::obs::CSensoryFrame) -> None
2. executeOn(self: mrpt.pymrpt.mrpt.bayes.CParticleFilter, obj: mrpt::bayes::CParticleFilterCapable, action: mrpt::obs::CActionCollection, observation: mrpt::obs::CSensoryFrame, stats: mrpt::bayes::CParticleFilter::TParticleFilterStats) -> None
Executes a complete prediction + update step of the selected particle
filtering algorithm.
The member CParticleFilter::m_options must be set before calling this
to settle the algorithm parameters.
The object representing the probability distribution
function (PDF) which apply the particle filter algorithm to.
A pointer to an action in the form of a
CActionCollection,
or nullptr if there is no action.
A pointer to observations in the form of a
CSensoryFrame, or nullptr if there is no observation.
An output structure for gathering statistics of the particle
filter execution, or set to nullptr if you do not need it (see
CParticleFilter::TParticleFilterStats).
CParticleFilterCapable, executeOn
C++: mrpt::bayes::CParticleFilter::executeOn(class mrpt::bayes::CParticleFilterCapable &, const class mrpt::obs::CActionCollection *, const class mrpt::obs::CSensoryFrame *, struct mrpt::bayes::CParticleFilter::TParticleFilterStats *) const --> void
Data descriptors defined here:
- m_options
Data and other attributes defined here:
- TParticleFilterAlgorithm = <class 'mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterAlgorithm'>
- TParticleFilterOptions = <class 'mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions'>
- The configuration of a particle filter.
- TParticleFilterStats = <class 'mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterStats'>
- Statistics for being returned from the "execute" method.
- TParticleResamplingAlgorithm = <class 'mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleResamplingAlgorithm'>
- pfAuxiliaryPFOptimal = <TParticleFilterAlgorithm.pfAuxiliaryPFOptimal: 3>
- pfAuxiliaryPFStandard = <TParticleFilterAlgorithm.pfAuxiliaryPFStandard: 1>
- pfOptimalProposal = <TParticleFilterAlgorithm.pfOptimalProposal: 2>
- pfStandardProposal = <TParticleFilterAlgorithm.pfStandardProposal: 0>
- prMultinomial = <TParticleResamplingAlgorithm.prMultinomial: 0>
- prResidual = <TParticleResamplingAlgorithm.prResidual: 1>
- prStratified = <TParticleResamplingAlgorithm.prStratified: 2>
- prSystematic = <TParticleResamplingAlgorithm.prSystematic: 3>
Static methods inherited from pybind11_builtins.pybind11_object:
- __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
- Create and return a new object. See help(type) for accurate signature.
|
class CParticleFilterCapable(pybind11_builtins.pybind11_object) |
|
This virtual class defines the interface that any particles based PDF class
must implement in order to be executed by a mrpt::bayes::CParticleFilter.
See the Particle
Filter tutorial explaining how to use the particle filter-related
classes.
CParticleFilter, CParticleFilterData |
|
- Method resolution order:
- CParticleFilterCapable
- pybind11_builtins.pybind11_object
- builtins.object
Methods defined here:
- ESS(...)
- ESS(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable) -> float
Returns the normalized ESS (Estimated Sample Size), in the range [0,1].
Note that you do NOT need to normalize the weights before calling this.
C++: mrpt::bayes::CParticleFilterCapable::ESS() const --> double
- __init__(self, /, *args, **kwargs)
- Initialize self. See help(type(self)) for accurate signature.
- assign(...)
- assign(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, : mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable) -> mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable
C++: mrpt::bayes::CParticleFilterCapable::operator=(const class mrpt::bayes::CParticleFilterCapable &) --> class mrpt::bayes::CParticleFilterCapable &
- fastDrawSample(...)
- fastDrawSample(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> int
Draws a random sample from the particle filter, in such a way that each
particle has a probability proportional to its weight (in the standard PF
algorithm).
This method can be used to generate a variable number of m_particles
when resampling: to vary the number of m_particles in the filter.
See prepareFastDrawSample for more information, or the
*href="http://www.mrpt.org/Particle_Filters" >Particle Filter
tutorial.
NOTES:
- You MUST call "prepareFastDrawSample" ONCE before calling this
method. That method must be called after modifying the particle filter
(executing one step, resampling, etc...)
- This method returns ONE index for the selected ("drawn") particle,
in
the range [0,M-1]
- You do not need to call "normalizeWeights" before calling this.
prepareFastDrawSample
C++: mrpt::bayes::CParticleFilterCapable::fastDrawSample(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &) const --> size_t
- getW(...)
- getW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, i: int) -> float
Access to i'th particle (logarithm) weight, where first one is index 0.
C++: mrpt::bayes::CParticleFilterCapable::getW(size_t) const --> double
- normalizeWeights(...)
- normalizeWeights(*args, **kwargs)
Overloaded function.
1. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable) -> float
2. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, out_max_log_w: float) -> float
Normalize the (logarithmic) weights, such as the maximum weight is zero.
If provided, will return with the maximum log_w
before normalizing, such as new_weights = old_weights - max_log_w.
The max/min ratio of weights ("dynamic range")
C++: mrpt::bayes::CParticleFilterCapable::normalizeWeights(double *) --> double
- particlesCount(...)
- particlesCount(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable) -> int
Get the m_particles count.
C++: mrpt::bayes::CParticleFilterCapable::particlesCount() const --> size_t
- performResampling(...)
- performResampling(*args, **kwargs)
Overloaded function.
1. performResampling(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> None
2. performResampling(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions, out_particle_count: int) -> None
Performs a resample of the m_particles, using the method selected in the
constructor.
After computing the surviving samples, this method internally calls
"performSubstitution" to actually perform the particle replacement.
This method is called automatically by CParticleFilter::execute,
andshould not be invoked manually normally.
To just obtaining the sequence of resampled indexes from a sequence of
weights, use "resample"
The desired number of output particles
after resampling; 0 means don't modify the current number.
resample
C++: mrpt::bayes::CParticleFilterCapable::performResampling(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &, size_t) --> void
- prediction_and_update(...)
- prediction_and_update(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, action: mrpt::obs::CActionCollection, observation: mrpt::obs::CSensoryFrame, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> None
Performs the prediction stage of the Particle Filter.
This method simply selects the appropiate protected method according to
the particle filter algorithm to run.
prediction_and_update_pfStandardProposal,prediction_and_update_pfAuxiliaryPFStandard,prediction_and_update_pfOptimalProposal,prediction_and_update_pfAuxiliaryPFOptimal
C++: mrpt::bayes::CParticleFilterCapable::prediction_and_update(const class mrpt::obs::CActionCollection *, const class mrpt::obs::CSensoryFrame *, const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &) --> void
- setW(...)
- setW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, i: int, w: float) -> None
Modifies i'th particle (logarithm) weight, where first one is index 0.
C++: mrpt::bayes::CParticleFilterCapable::setW(size_t, double) --> void
Static methods defined here:
- defaultEvaluator(...) from builtins.PyCapsule
- defaultEvaluator(PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions, obj: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, index: int, action: capsule, observation: capsule) -> float
The default evaluator function, which simply returns the particle
weight.
The action and the observation are declared as "void*" for a greater
flexibility.
prepareFastDrawSample
C++: mrpt::bayes::CParticleFilterCapable::defaultEvaluator(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &, const class mrpt::bayes::CParticleFilterCapable *, size_t, const void *, const void *) --> double
Static methods inherited from pybind11_builtins.pybind11_object:
- __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
- Create and return a new object. See help(type) for accurate signature.
|
class CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t(CParticleFilterCapable) |
| |
- Method resolution order:
- CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t
- CParticleFilterCapable
- pybind11_builtins.pybind11_object
- builtins.object
Methods defined here:
- ESS(...)
- ESS(*args, **kwargs)
Overloaded function.
1. ESS(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t) -> float
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::maps::CMultiMetricMapPDF, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::maps::CRBPFParticleData, mrpt::bayes::particle_storage_mode::POINTER>>>::ESS() const --> double
2. ESS(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t) -> float
Returns the normalized ESS (Estimated Sample Size), in the range [0,1].
Note that you do NOT need to normalize the weights before calling this.
C++: mrpt::bayes::CParticleFilterCapable::ESS() const --> double
- __init__(...)
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, arg0: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t) -> None
2. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, arg0: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t) -> None
3. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t) -> None
- assign(...)
- assign(*args, **kwargs)
Overloaded function.
1. assign(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, : mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t) -> mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::maps::CMultiMetricMapPDF, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::maps::CRBPFParticleData, mrpt::bayes::particle_storage_mode::POINTER>>>::operator=(const struct mrpt::bayes::CParticleFilterDataImpl<class mrpt::maps::CMultiMetricMapPDF, class std::deque<struct mrpt::bayes::CProbabilityParticle<class mrpt::maps::CRBPFParticleData, mrpt::bayes::particle_storage_mode::POINTER> > > &) --> struct mrpt::bayes::CParticleFilterDataImpl<class mrpt::maps::CMultiMetricMapPDF, class std::deque<struct mrpt::bayes::CProbabilityParticle<class mrpt::maps::CRBPFParticleData, mrpt::bayes::particle_storage_mode::POINTER> > > &
2. assign(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, : mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable) -> mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable
C++: mrpt::bayes::CParticleFilterCapable::operator=(const class mrpt::bayes::CParticleFilterCapable &) --> class mrpt::bayes::CParticleFilterCapable &
- derived(...)
- derived(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t) -> mrpt::maps::CMultiMetricMapPDF
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::maps::CMultiMetricMapPDF, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::maps::CRBPFParticleData, mrpt::bayes::particle_storage_mode::POINTER>>>::derived() --> class mrpt::maps::CMultiMetricMapPDF &
- fastDrawSample(...)
- fastDrawSample(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> int
Draws a random sample from the particle filter, in such a way that each
particle has a probability proportional to its weight (in the standard PF
algorithm).
This method can be used to generate a variable number of m_particles
when resampling: to vary the number of m_particles in the filter.
See prepareFastDrawSample for more information, or the
*href="http://www.mrpt.org/Particle_Filters" >Particle Filter
tutorial.
NOTES:
- You MUST call "prepareFastDrawSample" ONCE before calling this
method. That method must be called after modifying the particle filter
(executing one step, resampling, etc...)
- This method returns ONE index for the selected ("drawn") particle,
in
the range [0,M-1]
- You do not need to call "normalizeWeights" before calling this.
prepareFastDrawSample
C++: mrpt::bayes::CParticleFilterCapable::fastDrawSample(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &) const --> size_t
- getW(...)
- getW(*args, **kwargs)
Overloaded function.
1. getW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, i: int) -> float
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::maps::CMultiMetricMapPDF, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::maps::CRBPFParticleData, mrpt::bayes::particle_storage_mode::POINTER>>>::getW(size_t) const --> double
2. getW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, i: int) -> float
Access to i'th particle (logarithm) weight, where first one is index 0.
C++: mrpt::bayes::CParticleFilterCapable::getW(size_t) const --> double
- normalizeWeights(...)
- normalizeWeights(*args, **kwargs)
Overloaded function.
1. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t) -> float
2. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, out_max_log_w: float) -> float
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::maps::CMultiMetricMapPDF, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::maps::CRBPFParticleData, mrpt::bayes::particle_storage_mode::POINTER>>>::normalizeWeights(double *) --> double
3. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable) -> float
4. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, out_max_log_w: float) -> float
Normalize the (logarithmic) weights, such as the maximum weight is zero.
If provided, will return with the maximum log_w
before normalizing, such as new_weights = old_weights - max_log_w.
The max/min ratio of weights ("dynamic range")
C++: mrpt::bayes::CParticleFilterCapable::normalizeWeights(double *) --> double
- particlesCount(...)
- particlesCount(*args, **kwargs)
Overloaded function.
1. particlesCount(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t) -> int
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::maps::CMultiMetricMapPDF, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::maps::CRBPFParticleData, mrpt::bayes::particle_storage_mode::POINTER>>>::particlesCount() const --> size_t
2. particlesCount(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t) -> int
Get the m_particles count.
C++: mrpt::bayes::CParticleFilterCapable::particlesCount() const --> size_t
- performResampling(...)
- performResampling(*args, **kwargs)
Overloaded function.
1. performResampling(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> None
2. performResampling(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions, out_particle_count: int) -> None
Performs a resample of the m_particles, using the method selected in the
constructor.
After computing the surviving samples, this method internally calls
"performSubstitution" to actually perform the particle replacement.
This method is called automatically by CParticleFilter::execute,
andshould not be invoked manually normally.
To just obtaining the sequence of resampled indexes from a sequence of
weights, use "resample"
The desired number of output particles
after resampling; 0 means don't modify the current number.
resample
C++: mrpt::bayes::CParticleFilterCapable::performResampling(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &, size_t) --> void
- prediction_and_update(...)
- prediction_and_update(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, action: mrpt.pymrpt.mrpt.obs.CActionCollection, observation: mrpt.pymrpt.mrpt.obs.CSensoryFrame, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> None
Performs the prediction stage of the Particle Filter.
This method simply selects the appropiate protected method according to
the particle filter algorithm to run.
prediction_and_update_pfStandardProposal,prediction_and_update_pfAuxiliaryPFStandard,prediction_and_update_pfOptimalProposal,prediction_and_update_pfAuxiliaryPFOptimal
C++: mrpt::bayes::CParticleFilterCapable::prediction_and_update(const class mrpt::obs::CActionCollection *, const class mrpt::obs::CSensoryFrame *, const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &) --> void
- setW(...)
- setW(*args, **kwargs)
Overloaded function.
1. setW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, i: int, w: float) -> None
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::maps::CMultiMetricMapPDF, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::maps::CRBPFParticleData, mrpt::bayes::particle_storage_mode::POINTER>>>::setW(size_t, double) --> void
2. setW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_maps_CMultiMetricMapPDF_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_maps_CRBPFParticleData_mrpt_bayes_particle_storage_mode_POINTER_t, i: int, w: float) -> None
Modifies i'th particle (logarithm) weight, where first one is index 0.
C++: mrpt::bayes::CParticleFilterCapable::setW(size_t, double) --> void
Static methods defined here:
- defaultEvaluator(...) from builtins.PyCapsule
- defaultEvaluator(PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions, obj: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, index: int, action: capsule, observation: capsule) -> float
The default evaluator function, which simply returns the particle
weight.
The action and the observation are declared as "void*" for a greater
flexibility.
prepareFastDrawSample
C++: mrpt::bayes::CParticleFilterCapable::defaultEvaluator(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &, const class mrpt::bayes::CParticleFilterCapable *, size_t, const void *, const void *) --> double
Static methods inherited from pybind11_builtins.pybind11_object:
- __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
- Create and return a new object. See help(type) for accurate signature.
|
class CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t(CParticleFilterCapable) |
| |
- Method resolution order:
- CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t
- CParticleFilterCapable
- pybind11_builtins.pybind11_object
- builtins.object
Methods defined here:
- ESS(...)
- ESS(*args, **kwargs)
Overloaded function.
1. ESS(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t) -> float
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPointPDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPoint3D_<float>, mrpt::bayes::particle_storage_mode::POINTER>>>::ESS() const --> double
2. ESS(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t) -> float
Returns the normalized ESS (Estimated Sample Size), in the range [0,1].
Note that you do NOT need to normalize the weights before calling this.
C++: mrpt::bayes::CParticleFilterCapable::ESS() const --> double
- __init__(...)
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t, arg0: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t) -> None
2. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t, arg0: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t) -> None
3. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t) -> None
- assign(...)
- assign(*args, **kwargs)
Overloaded function.
1. assign(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t, : mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t) -> mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPointPDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPoint3D_<float>, mrpt::bayes::particle_storage_mode::POINTER>>>::operator=(const struct mrpt::bayes::CParticleFilterDataImpl<class mrpt::poses::CPointPDFParticles, class std::deque<struct mrpt::bayes::CProbabilityParticle<struct mrpt::math::TPoint3D_<float>, mrpt::bayes::particle_storage_mode::POINTER> > > &) --> struct mrpt::bayes::CParticleFilterDataImpl<class mrpt::poses::CPointPDFParticles, class std::deque<struct mrpt::bayes::CProbabilityParticle<struct mrpt::math::TPoint3D_<float>, mrpt::bayes::particle_storage_mode::POINTER> > > &
2. assign(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t, : mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable) -> mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable
C++: mrpt::bayes::CParticleFilterCapable::operator=(const class mrpt::bayes::CParticleFilterCapable &) --> class mrpt::bayes::CParticleFilterCapable &
- derived(...)
- derived(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t) -> mrpt::poses::CPointPDFParticles
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPointPDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPoint3D_<float>, mrpt::bayes::particle_storage_mode::POINTER>>>::derived() --> class mrpt::poses::CPointPDFParticles &
- fastDrawSample(...)
- fastDrawSample(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> int
Draws a random sample from the particle filter, in such a way that each
particle has a probability proportional to its weight (in the standard PF
algorithm).
This method can be used to generate a variable number of m_particles
when resampling: to vary the number of m_particles in the filter.
See prepareFastDrawSample for more information, or the
*href="http://www.mrpt.org/Particle_Filters" >Particle Filter
tutorial.
NOTES:
- You MUST call "prepareFastDrawSample" ONCE before calling this
method. That method must be called after modifying the particle filter
(executing one step, resampling, etc...)
- This method returns ONE index for the selected ("drawn") particle,
in
the range [0,M-1]
- You do not need to call "normalizeWeights" before calling this.
prepareFastDrawSample
C++: mrpt::bayes::CParticleFilterCapable::fastDrawSample(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &) const --> size_t
- getW(...)
- getW(*args, **kwargs)
Overloaded function.
1. getW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t, i: int) -> float
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPointPDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPoint3D_<float>, mrpt::bayes::particle_storage_mode::POINTER>>>::getW(size_t) const --> double
2. getW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t, i: int) -> float
Access to i'th particle (logarithm) weight, where first one is index 0.
C++: mrpt::bayes::CParticleFilterCapable::getW(size_t) const --> double
- normalizeWeights(...)
- normalizeWeights(*args, **kwargs)
Overloaded function.
1. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t) -> float
2. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t, out_max_log_w: float) -> float
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPointPDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPoint3D_<float>, mrpt::bayes::particle_storage_mode::POINTER>>>::normalizeWeights(double *) --> double
3. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable) -> float
4. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t, out_max_log_w: float) -> float
Normalize the (logarithmic) weights, such as the maximum weight is zero.
If provided, will return with the maximum log_w
before normalizing, such as new_weights = old_weights - max_log_w.
The max/min ratio of weights ("dynamic range")
C++: mrpt::bayes::CParticleFilterCapable::normalizeWeights(double *) --> double
- particlesCount(...)
- particlesCount(*args, **kwargs)
Overloaded function.
1. particlesCount(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t) -> int
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPointPDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPoint3D_<float>, mrpt::bayes::particle_storage_mode::POINTER>>>::particlesCount() const --> size_t
2. particlesCount(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t) -> int
Get the m_particles count.
C++: mrpt::bayes::CParticleFilterCapable::particlesCount() const --> size_t
- performResampling(...)
- performResampling(*args, **kwargs)
Overloaded function.
1. performResampling(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> None
2. performResampling(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions, out_particle_count: int) -> None
Performs a resample of the m_particles, using the method selected in the
constructor.
After computing the surviving samples, this method internally calls
"performSubstitution" to actually perform the particle replacement.
This method is called automatically by CParticleFilter::execute,
andshould not be invoked manually normally.
To just obtaining the sequence of resampled indexes from a sequence of
weights, use "resample"
The desired number of output particles
after resampling; 0 means don't modify the current number.
resample
C++: mrpt::bayes::CParticleFilterCapable::performResampling(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &, size_t) --> void
- prediction_and_update(...)
- prediction_and_update(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t, action: mrpt.pymrpt.mrpt.obs.CActionCollection, observation: mrpt.pymrpt.mrpt.obs.CSensoryFrame, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> None
Performs the prediction stage of the Particle Filter.
This method simply selects the appropiate protected method according to
the particle filter algorithm to run.
prediction_and_update_pfStandardProposal,prediction_and_update_pfAuxiliaryPFStandard,prediction_and_update_pfOptimalProposal,prediction_and_update_pfAuxiliaryPFOptimal
C++: mrpt::bayes::CParticleFilterCapable::prediction_and_update(const class mrpt::obs::CActionCollection *, const class mrpt::obs::CSensoryFrame *, const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &) --> void
- setW(...)
- setW(*args, **kwargs)
Overloaded function.
1. setW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t, i: int, w: float) -> None
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPointPDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPoint3D_<float>, mrpt::bayes::particle_storage_mode::POINTER>>>::setW(size_t, double) --> void
2. setW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPointPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t, i: int, w: float) -> None
Modifies i'th particle (logarithm) weight, where first one is index 0.
C++: mrpt::bayes::CParticleFilterCapable::setW(size_t, double) --> void
Static methods defined here:
- defaultEvaluator(...) from builtins.PyCapsule
- defaultEvaluator(PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions, obj: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, index: int, action: capsule, observation: capsule) -> float
The default evaluator function, which simply returns the particle
weight.
The action and the observation are declared as "void*" for a greater
flexibility.
prepareFastDrawSample
C++: mrpt::bayes::CParticleFilterCapable::defaultEvaluator(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &, const class mrpt::bayes::CParticleFilterCapable *, size_t, const void *, const void *) --> double
Static methods inherited from pybind11_builtins.pybind11_object:
- __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
- Create and return a new object. See help(type) for accurate signature.
|
class CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t(CParticleFilterCapable) |
| |
- Method resolution order:
- CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t
- CParticleFilterCapable
- pybind11_builtins.pybind11_object
- builtins.object
Methods defined here:
- ESS(...)
- ESS(*args, **kwargs)
Overloaded function.
1. ESS(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t) -> float
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPose3DPDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPose3D, mrpt::bayes::particle_storage_mode::VALUE>>>::ESS() const --> double
2. ESS(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t) -> float
Returns the normalized ESS (Estimated Sample Size), in the range [0,1].
Note that you do NOT need to normalize the weights before calling this.
C++: mrpt::bayes::CParticleFilterCapable::ESS() const --> double
- __init__(...)
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t) -> None
2. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t, arg0: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t) -> None
3. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t, arg0: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t) -> None
- assign(...)
- assign(*args, **kwargs)
Overloaded function.
1. assign(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t, : mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t) -> mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPose3DPDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPose3D, mrpt::bayes::particle_storage_mode::VALUE>>>::operator=(const struct mrpt::bayes::CParticleFilterDataImpl<class mrpt::poses::CPose3DPDFParticles, class std::deque<struct mrpt::bayes::CProbabilityParticle<struct mrpt::math::TPose3D, mrpt::bayes::particle_storage_mode::VALUE> > > &) --> struct mrpt::bayes::CParticleFilterDataImpl<class mrpt::poses::CPose3DPDFParticles, class std::deque<struct mrpt::bayes::CProbabilityParticle<struct mrpt::math::TPose3D, mrpt::bayes::particle_storage_mode::VALUE> > > &
2. assign(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t, : mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable) -> mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable
C++: mrpt::bayes::CParticleFilterCapable::operator=(const class mrpt::bayes::CParticleFilterCapable &) --> class mrpt::bayes::CParticleFilterCapable &
- derived(...)
- derived(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t) -> mrpt::poses::CPose3DPDFParticles
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPose3DPDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPose3D, mrpt::bayes::particle_storage_mode::VALUE>>>::derived() --> class mrpt::poses::CPose3DPDFParticles &
- fastDrawSample(...)
- fastDrawSample(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> int
Draws a random sample from the particle filter, in such a way that each
particle has a probability proportional to its weight (in the standard PF
algorithm).
This method can be used to generate a variable number of m_particles
when resampling: to vary the number of m_particles in the filter.
See prepareFastDrawSample for more information, or the
*href="http://www.mrpt.org/Particle_Filters" >Particle Filter
tutorial.
NOTES:
- You MUST call "prepareFastDrawSample" ONCE before calling this
method. That method must be called after modifying the particle filter
(executing one step, resampling, etc...)
- This method returns ONE index for the selected ("drawn") particle,
in
the range [0,M-1]
- You do not need to call "normalizeWeights" before calling this.
prepareFastDrawSample
C++: mrpt::bayes::CParticleFilterCapable::fastDrawSample(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &) const --> size_t
- getW(...)
- getW(*args, **kwargs)
Overloaded function.
1. getW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t, i: int) -> float
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPose3DPDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPose3D, mrpt::bayes::particle_storage_mode::VALUE>>>::getW(size_t) const --> double
2. getW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t, i: int) -> float
Access to i'th particle (logarithm) weight, where first one is index 0.
C++: mrpt::bayes::CParticleFilterCapable::getW(size_t) const --> double
- normalizeWeights(...)
- normalizeWeights(*args, **kwargs)
Overloaded function.
1. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t) -> float
2. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t, out_max_log_w: float) -> float
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPose3DPDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPose3D, mrpt::bayes::particle_storage_mode::VALUE>>>::normalizeWeights(double *) --> double
3. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable) -> float
4. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t, out_max_log_w: float) -> float
Normalize the (logarithmic) weights, such as the maximum weight is zero.
If provided, will return with the maximum log_w
before normalizing, such as new_weights = old_weights - max_log_w.
The max/min ratio of weights ("dynamic range")
C++: mrpt::bayes::CParticleFilterCapable::normalizeWeights(double *) --> double
- particlesCount(...)
- particlesCount(*args, **kwargs)
Overloaded function.
1. particlesCount(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t) -> int
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPose3DPDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPose3D, mrpt::bayes::particle_storage_mode::VALUE>>>::particlesCount() const --> size_t
2. particlesCount(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t) -> int
Get the m_particles count.
C++: mrpt::bayes::CParticleFilterCapable::particlesCount() const --> size_t
- performResampling(...)
- performResampling(*args, **kwargs)
Overloaded function.
1. performResampling(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> None
2. performResampling(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions, out_particle_count: int) -> None
Performs a resample of the m_particles, using the method selected in the
constructor.
After computing the surviving samples, this method internally calls
"performSubstitution" to actually perform the particle replacement.
This method is called automatically by CParticleFilter::execute,
andshould not be invoked manually normally.
To just obtaining the sequence of resampled indexes from a sequence of
weights, use "resample"
The desired number of output particles
after resampling; 0 means don't modify the current number.
resample
C++: mrpt::bayes::CParticleFilterCapable::performResampling(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &, size_t) --> void
- prediction_and_update(...)
- prediction_and_update(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t, action: mrpt.pymrpt.mrpt.obs.CActionCollection, observation: mrpt.pymrpt.mrpt.obs.CSensoryFrame, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> None
Performs the prediction stage of the Particle Filter.
This method simply selects the appropiate protected method according to
the particle filter algorithm to run.
prediction_and_update_pfStandardProposal,prediction_and_update_pfAuxiliaryPFStandard,prediction_and_update_pfOptimalProposal,prediction_and_update_pfAuxiliaryPFOptimal
C++: mrpt::bayes::CParticleFilterCapable::prediction_and_update(const class mrpt::obs::CActionCollection *, const class mrpt::obs::CSensoryFrame *, const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &) --> void
- setW(...)
- setW(*args, **kwargs)
Overloaded function.
1. setW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t, i: int, w: float) -> None
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPose3DPDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPose3D, mrpt::bayes::particle_storage_mode::VALUE>>>::setW(size_t, double) --> void
2. setW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPose3DPDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t, i: int, w: float) -> None
Modifies i'th particle (logarithm) weight, where first one is index 0.
C++: mrpt::bayes::CParticleFilterCapable::setW(size_t, double) --> void
Static methods defined here:
- defaultEvaluator(...) from builtins.PyCapsule
- defaultEvaluator(PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions, obj: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, index: int, action: capsule, observation: capsule) -> float
The default evaluator function, which simply returns the particle
weight.
The action and the observation are declared as "void*" for a greater
flexibility.
prepareFastDrawSample
C++: mrpt::bayes::CParticleFilterCapable::defaultEvaluator(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &, const class mrpt::bayes::CParticleFilterCapable *, size_t, const void *, const void *) --> double
Static methods inherited from pybind11_builtins.pybind11_object:
- __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
- Create and return a new object. See help(type) for accurate signature.
|
class CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t(CParticleFilterCapable) |
| |
- Method resolution order:
- CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t
- CParticleFilterCapable
- pybind11_builtins.pybind11_object
- builtins.object
Methods defined here:
- ESS(...)
- ESS(*args, **kwargs)
Overloaded function.
1. ESS(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t) -> float
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPosePDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPose2D, mrpt::bayes::particle_storage_mode::VALUE>>>::ESS() const --> double
2. ESS(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t) -> float
Returns the normalized ESS (Estimated Sample Size), in the range [0,1].
Note that you do NOT need to normalize the weights before calling this.
C++: mrpt::bayes::CParticleFilterCapable::ESS() const --> double
- __init__(...)
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t) -> None
2. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t, arg0: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t) -> None
3. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t, arg0: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t) -> None
- assign(...)
- assign(*args, **kwargs)
Overloaded function.
1. assign(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t, : mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t) -> mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPosePDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPose2D, mrpt::bayes::particle_storage_mode::VALUE>>>::operator=(const struct mrpt::bayes::CParticleFilterDataImpl<class mrpt::poses::CPosePDFParticles, class std::deque<struct mrpt::bayes::CProbabilityParticle<struct mrpt::math::TPose2D, mrpt::bayes::particle_storage_mode::VALUE> > > &) --> struct mrpt::bayes::CParticleFilterDataImpl<class mrpt::poses::CPosePDFParticles, class std::deque<struct mrpt::bayes::CProbabilityParticle<struct mrpt::math::TPose2D, mrpt::bayes::particle_storage_mode::VALUE> > > &
2. assign(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t, : mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable) -> mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable
C++: mrpt::bayes::CParticleFilterCapable::operator=(const class mrpt::bayes::CParticleFilterCapable &) --> class mrpt::bayes::CParticleFilterCapable &
- derived(...)
- derived(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t) -> mrpt::poses::CPosePDFParticles
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPosePDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPose2D, mrpt::bayes::particle_storage_mode::VALUE>>>::derived() --> class mrpt::poses::CPosePDFParticles &
- fastDrawSample(...)
- fastDrawSample(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> int
Draws a random sample from the particle filter, in such a way that each
particle has a probability proportional to its weight (in the standard PF
algorithm).
This method can be used to generate a variable number of m_particles
when resampling: to vary the number of m_particles in the filter.
See prepareFastDrawSample for more information, or the
*href="http://www.mrpt.org/Particle_Filters" >Particle Filter
tutorial.
NOTES:
- You MUST call "prepareFastDrawSample" ONCE before calling this
method. That method must be called after modifying the particle filter
(executing one step, resampling, etc...)
- This method returns ONE index for the selected ("drawn") particle,
in
the range [0,M-1]
- You do not need to call "normalizeWeights" before calling this.
prepareFastDrawSample
C++: mrpt::bayes::CParticleFilterCapable::fastDrawSample(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &) const --> size_t
- getW(...)
- getW(*args, **kwargs)
Overloaded function.
1. getW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t, i: int) -> float
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPosePDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPose2D, mrpt::bayes::particle_storage_mode::VALUE>>>::getW(size_t) const --> double
2. getW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t, i: int) -> float
Access to i'th particle (logarithm) weight, where first one is index 0.
C++: mrpt::bayes::CParticleFilterCapable::getW(size_t) const --> double
- normalizeWeights(...)
- normalizeWeights(*args, **kwargs)
Overloaded function.
1. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t) -> float
2. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t, out_max_log_w: float) -> float
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPosePDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPose2D, mrpt::bayes::particle_storage_mode::VALUE>>>::normalizeWeights(double *) --> double
3. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable) -> float
4. normalizeWeights(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t, out_max_log_w: float) -> float
Normalize the (logarithmic) weights, such as the maximum weight is zero.
If provided, will return with the maximum log_w
before normalizing, such as new_weights = old_weights - max_log_w.
The max/min ratio of weights ("dynamic range")
C++: mrpt::bayes::CParticleFilterCapable::normalizeWeights(double *) --> double
- particlesCount(...)
- particlesCount(*args, **kwargs)
Overloaded function.
1. particlesCount(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t) -> int
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPosePDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPose2D, mrpt::bayes::particle_storage_mode::VALUE>>>::particlesCount() const --> size_t
2. particlesCount(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t) -> int
Get the m_particles count.
C++: mrpt::bayes::CParticleFilterCapable::particlesCount() const --> size_t
- performResampling(...)
- performResampling(*args, **kwargs)
Overloaded function.
1. performResampling(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> None
2. performResampling(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions, out_particle_count: int) -> None
Performs a resample of the m_particles, using the method selected in the
constructor.
After computing the surviving samples, this method internally calls
"performSubstitution" to actually perform the particle replacement.
This method is called automatically by CParticleFilter::execute,
andshould not be invoked manually normally.
To just obtaining the sequence of resampled indexes from a sequence of
weights, use "resample"
The desired number of output particles
after resampling; 0 means don't modify the current number.
resample
C++: mrpt::bayes::CParticleFilterCapable::performResampling(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &, size_t) --> void
- prediction_and_update(...)
- prediction_and_update(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t, action: mrpt.pymrpt.mrpt.obs.CActionCollection, observation: mrpt.pymrpt.mrpt.obs.CSensoryFrame, PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions) -> None
Performs the prediction stage of the Particle Filter.
This method simply selects the appropiate protected method according to
the particle filter algorithm to run.
prediction_and_update_pfStandardProposal,prediction_and_update_pfAuxiliaryPFStandard,prediction_and_update_pfOptimalProposal,prediction_and_update_pfAuxiliaryPFOptimal
C++: mrpt::bayes::CParticleFilterCapable::prediction_and_update(const class mrpt::obs::CActionCollection *, const class mrpt::obs::CSensoryFrame *, const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &) --> void
- setW(...)
- setW(*args, **kwargs)
Overloaded function.
1. setW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t, i: int, w: float) -> None
C++: mrpt::bayes::CParticleFilterDataImpl<mrpt::poses::CPosePDFParticles, std::deque<mrpt::bayes::CProbabilityParticle<mrpt::math::TPose2D, mrpt::bayes::particle_storage_mode::VALUE>>>::setW(size_t, double) --> void
2. setW(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterDataImpl_mrpt_poses_CPosePDFParticles_std_deque_mrpt_bayes_CProbabilityParticle_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t, i: int, w: float) -> None
Modifies i'th particle (logarithm) weight, where first one is index 0.
C++: mrpt::bayes::CParticleFilterCapable::setW(size_t, double) --> void
Static methods defined here:
- defaultEvaluator(...) from builtins.PyCapsule
- defaultEvaluator(PF_options: mrpt.pymrpt.mrpt.bayes.CParticleFilter.TParticleFilterOptions, obj: mrpt.pymrpt.mrpt.bayes.CParticleFilterCapable, index: int, action: capsule, observation: capsule) -> float
The default evaluator function, which simply returns the particle
weight.
The action and the observation are declared as "void*" for a greater
flexibility.
prepareFastDrawSample
C++: mrpt::bayes::CParticleFilterCapable::defaultEvaluator(const struct mrpt::bayes::CParticleFilter::TParticleFilterOptions &, const class mrpt::bayes::CParticleFilterCapable *, size_t, const void *, const void *) --> double
Static methods inherited from pybind11_builtins.pybind11_object:
- __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
- Create and return a new object. See help(type) for accurate signature.
|
class CParticleFilterData_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t(pybind11_builtins.pybind11_object) |
| |
- Method resolution order:
- CParticleFilterData_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t
- pybind11_builtins.pybind11_object
- builtins.object
Methods defined here:
- __init__(...)
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t) -> None
2. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t, arg0: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t) -> None
- assign(...)
- assign(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t, : mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t) -> mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t
C++: mrpt::bayes::CParticleFilterData<mrpt::math::TPoint3D_<float>, mrpt::bayes::particle_storage_mode::POINTER>::operator=(const class mrpt::bayes::CParticleFilterData<struct mrpt::math::TPoint3D_<float>, mrpt::bayes::particle_storage_mode::POINTER> &) --> class mrpt::bayes::CParticleFilterData<struct mrpt::math::TPoint3D_<float>, mrpt::bayes::particle_storage_mode::POINTER> &
- clearParticles(...)
- clearParticles(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t) -> None
C++: mrpt::bayes::CParticleFilterData<mrpt::math::TPoint3D_<float>, mrpt::bayes::particle_storage_mode::POINTER>::clearParticles() --> void
- getMostLikelyParticle(...)
- getMostLikelyParticle(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPoint3D_float_mrpt_bayes_particle_storage_mode_POINTER_t) -> mrpt::bayes::CProbabilityParticle<mrpt::math::TPoint3D_<float>, (mrpt::bayes::particle_storage_mode)1>
C++: mrpt::bayes::CParticleFilterData<mrpt::math::TPoint3D_<float>, mrpt::bayes::particle_storage_mode::POINTER>::getMostLikelyParticle() const --> const struct mrpt::bayes::CProbabilityParticle<struct mrpt::math::TPoint3D_<float>, mrpt::bayes::particle_storage_mode::POINTER> *
Data descriptors defined here:
- m_particles
Static methods inherited from pybind11_builtins.pybind11_object:
- __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
- Create and return a new object. See help(type) for accurate signature.
|
class CParticleFilterData_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t(pybind11_builtins.pybind11_object) |
| |
- Method resolution order:
- CParticleFilterData_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t
- pybind11_builtins.pybind11_object
- builtins.object
Methods defined here:
- __init__(...)
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t) -> None
2. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t, arg0: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t) -> None
- assign(...)
- assign(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t, : mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t) -> mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t
C++: mrpt::bayes::CParticleFilterData<mrpt::math::TPose2D, mrpt::bayes::particle_storage_mode::VALUE>::operator=(const class mrpt::bayes::CParticleFilterData<struct mrpt::math::TPose2D, mrpt::bayes::particle_storage_mode::VALUE> &) --> class mrpt::bayes::CParticleFilterData<struct mrpt::math::TPose2D, mrpt::bayes::particle_storage_mode::VALUE> &
- clearParticles(...)
- clearParticles(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t) -> None
C++: mrpt::bayes::CParticleFilterData<mrpt::math::TPose2D, mrpt::bayes::particle_storage_mode::VALUE>::clearParticles() --> void
- getMostLikelyParticle(...)
- getMostLikelyParticle(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPose2D_mrpt_bayes_particle_storage_mode_VALUE_t) -> mrpt::bayes::CProbabilityParticle<mrpt::math::TPose2D, (mrpt::bayes::particle_storage_mode)0>
C++: mrpt::bayes::CParticleFilterData<mrpt::math::TPose2D, mrpt::bayes::particle_storage_mode::VALUE>::getMostLikelyParticle() const --> const struct mrpt::bayes::CProbabilityParticle<struct mrpt::math::TPose2D, mrpt::bayes::particle_storage_mode::VALUE> *
Data descriptors defined here:
- m_particles
Static methods inherited from pybind11_builtins.pybind11_object:
- __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
- Create and return a new object. See help(type) for accurate signature.
|
class CParticleFilterData_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t(pybind11_builtins.pybind11_object) |
| |
- Method resolution order:
- CParticleFilterData_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t
- pybind11_builtins.pybind11_object
- builtins.object
Methods defined here:
- __init__(...)
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t) -> None
2. __init__(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t, arg0: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t) -> None
- assign(...)
- assign(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t, : mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t) -> mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t
C++: mrpt::bayes::CParticleFilterData<mrpt::math::TPose3D, mrpt::bayes::particle_storage_mode::VALUE>::operator=(const class mrpt::bayes::CParticleFilterData<struct mrpt::math::TPose3D, mrpt::bayes::particle_storage_mode::VALUE> &) --> class mrpt::bayes::CParticleFilterData<struct mrpt::math::TPose3D, mrpt::bayes::particle_storage_mode::VALUE> &
- clearParticles(...)
- clearParticles(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t) -> None
C++: mrpt::bayes::CParticleFilterData<mrpt::math::TPose3D, mrpt::bayes::particle_storage_mode::VALUE>::clearParticles() --> void
- getMostLikelyParticle(...)
- getMostLikelyParticle(self: mrpt.pymrpt.mrpt.bayes.CParticleFilterData_mrpt_math_TPose3D_mrpt_bayes_particle_storage_mode_VALUE_t) -> mrpt::bayes::CProbabilityParticle<mrpt::math::TPose3D, (mrpt::bayes::particle_storage_mode)0>
C++: mrpt::bayes::CParticleFilterData<mrpt::math::TPose3D, mrpt::bayes::particle_storage_mode::VALUE>::getMostLikelyParticle() const --> const struct mrpt::bayes::CProbabilityParticle<struct mrpt::math::TPose3D, mrpt::bayes::particle_storage_mode::VALUE> *
Data descriptors defined here:
- m_particles
Static methods inherited from pybind11_builtins.pybind11_object:
- __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
- Create and return a new object. See help(type) for accurate signature.
|
class TKFMethod(pybind11_builtins.pybind11_object) |
| |
- Method resolution order:
- TKFMethod
- pybind11_builtins.pybind11_object
- builtins.object
Methods defined here:
- __and__(...)
- __and__(self: object, other: object) -> object
- __eq__(...)
- __eq__(self: object, other: object) -> bool
- __ge__(...)
- __ge__(self: object, other: object) -> bool
- __getstate__(...)
- __getstate__(self: object) -> int
- __gt__(...)
- __gt__(self: object, other: object) -> bool
- __hash__(...)
- __hash__(self: object) -> int
- __index__(...)
- __index__(self: mrpt.pymrpt.mrpt.bayes.TKFMethod) -> int
- __init__(...)
- __init__(self: mrpt.pymrpt.mrpt.bayes.TKFMethod, value: int) -> None
- __int__(...)
- __int__(self: mrpt.pymrpt.mrpt.bayes.TKFMethod) -> int
- __invert__(...)
- __invert__(self: object) -> object
- __le__(...)
- __le__(self: object, other: object) -> bool
- __lt__(...)
- __lt__(self: object, other: object) -> bool
- __ne__(...)
- __ne__(self: object, other: object) -> bool
- __or__(...)
- __or__(self: object, other: object) -> object
- __rand__(...)
- __rand__(self: object, other: object) -> object
- __repr__(...)
- __repr__(self: object) -> str
- __ror__(...)
- __ror__(self: object, other: object) -> object
- __rxor__(...)
- __rxor__(self: object, other: object) -> object
- __setstate__(...)
- __setstate__(self: mrpt.pymrpt.mrpt.bayes.TKFMethod, state: int) -> None
- __str__ = name(...)
- name(self: handle) -> str
- __xor__(...)
- __xor__(self: object, other: object) -> object
Readonly properties defined here:
- __members__
- name
- name(self: handle) -> str
- value
Data and other attributes defined here:
- kfEKFAlaDavison = <TKFMethod.kfEKFAlaDavison: 1>
- kfEKFNaive = <TKFMethod.kfEKFNaive: 0>
- kfIKF = <TKFMethod.kfIKF: 3>
- kfIKFFull = <TKFMethod.kfIKFFull: 2>
Static methods inherited from pybind11_builtins.pybind11_object:
- __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
- Create and return a new object. See help(type) for accurate signature.
|
class TKF_options(mrpt.pymrpt.mrpt.config.CLoadableOptions) |
|
Generic options for the Kalman Filter algorithm in itself. |
|
- Method resolution order:
- TKF_options
- mrpt.pymrpt.mrpt.config.CLoadableOptions
- pybind11_builtins.pybind11_object
- builtins.object
Methods defined here:
- __init__(...)
- __init__(*args, **kwargs)
Overloaded function.
1. __init__(self: mrpt.pymrpt.mrpt.bayes.TKF_options, verb_level_ref: mrpt.pymrpt.mrpt.system.VerbosityLevel) -> None
2. __init__(self: mrpt.pymrpt.mrpt.bayes.TKF_options, arg0: mrpt.pymrpt.mrpt.bayes.TKF_options) -> None
3. __init__(self: mrpt.pymrpt.mrpt.bayes.TKF_options, arg0: mrpt.pymrpt.mrpt.bayes.TKF_options) -> None
- loadFromConfigFile(...)
- loadFromConfigFile(self: mrpt.pymrpt.mrpt.bayes.TKF_options, iniFile: mrpt.pymrpt.mrpt.config.CConfigFileBase, section: str) -> None
C++: mrpt::bayes::TKF_options::loadFromConfigFile(const class mrpt::config::CConfigFileBase &, const std::string &) --> void
Data descriptors defined here:
- IKF_iterations
- debug_verify_analytic_jacobians
- debug_verify_analytic_jacobians_threshold
- enable_profiler
- method
- use_analytic_observation_jacobian
- use_analytic_transition_jacobian
Methods inherited from mrpt.pymrpt.mrpt.config.CLoadableOptions:
- assign(...)
- assign(self: mrpt.pymrpt.mrpt.config.CLoadableOptions, : mrpt.pymrpt.mrpt.config.CLoadableOptions) -> mrpt.pymrpt.mrpt.config.CLoadableOptions
C++: mrpt::config::CLoadableOptions::operator=(const class mrpt::config::CLoadableOptions &) --> class mrpt::config::CLoadableOptions &
- dumpToConsole(...)
- dumpToConsole(self: mrpt.pymrpt.mrpt.config.CLoadableOptions) -> None
Just like but sending the text to the console
(std::cout)
C++: mrpt::config::CLoadableOptions::dumpToConsole() const --> void
- loadFromConfigFileName(...)
- loadFromConfigFileName(self: mrpt.pymrpt.mrpt.config.CLoadableOptions, config_file: str, section: str) -> None
Behaves like loadFromConfigFile, but you can pass directly a file name
and a temporary CConfigFile object will be created automatically to load
the file.
loadFromConfigFile
C++: mrpt::config::CLoadableOptions::loadFromConfigFileName(const std::string &, const std::string &) --> void
- saveToConfigFile(...)
- saveToConfigFile(self: mrpt.pymrpt.mrpt.config.CLoadableOptions, target: mrpt::config::CConfigFileBase, section: str) -> None
This method saves the options to a ".ini"-like file or memory-stored
string list.
loadFromConfigFile, saveToConfigFileName
C++: mrpt::config::CLoadableOptions::saveToConfigFile(class mrpt::config::CConfigFileBase &, const std::string &) const --> void
- saveToConfigFileName(...)
- saveToConfigFileName(self: mrpt.pymrpt.mrpt.config.CLoadableOptions, config_file: str, section: str) -> None
Behaves like saveToConfigFile, but you can pass directly a file name and
a temporary CConfigFile object will be created automatically to save the
file.
saveToConfigFile, loadFromConfigFileName
C++: mrpt::config::CLoadableOptions::saveToConfigFileName(const std::string &, const std::string &) const --> void
Static methods inherited from pybind11_builtins.pybind11_object:
- __new__(*args, **kwargs) from pybind11_builtins.pybind11_type
- Create and return a new object. See help(type) for accurate signature.
|
|