
User guide for libsrba: A generic C++ framework

for Relative Bundle Adjustment (RBA)

Jose Luis Blanco-Claraco
joseluisblancoc@gmail.com
http://www.mrpt.org/

Library version: 1.3.9
Document build: February 13, 2016

This work is licensed under Attribution-ShareAlike 3.0 International (CC BY-SA 3.0) License.

1

Revision history:

• Dec 2015: Update of compile instructions.

• May 2013: Second version. Added Fig. 8 and the section on spanning
trees.

• March 2013: First version. Released along MRPT 1.0.0.

To cite SRBA, consider the most relevant work among the following ones:

@ARTICLE{moreno2016ctslam,

author = {Moreno, F.A. and Blanco, J.L. and Gonzalez-Jimenez, J.},

title = {A constant-time SLAM back-end in the continuum between global

mapping and submapping: application to visual stereo SLAM},

journal = {International Journal of Robotics Research},

year = {2016 (in Press)}

}

@INPROCEEDINGS{blanco2013srba,

author = {Blanco, J.L. and Gonzalez-Jimenez, J. and Fernandez-Madrigal, J.A.},

month = {{may}},

title = {{Sparser Relative Bundle Adjustment (SRBA): constant-time

maintenance and local optimization of arbitrarily large maps}},

booktitle = {IEEE International Conference on Robotics and Automation (ICRA)},

year = {2013}

}

and here the one for this guide:

@MISC{libsrba-guide,

author = {Jose-Luis Blanco-Claraco},

title = {{User guide for \texttt{libsrba}: A generic

C++ framework for Relative Bundle Adjustment (RBA)}},

howpublished = {http://www.mrpt.org/srba},

year = {2013}

}

2

Contents

1 Introduction 5

2 Library installation 6
2.1 Prerequisites . 6
2.2 Building SRBA . 6
2.3 Building your own SRBA-based programs 7

3 RBA primer 8

4 Programmer’s first steps 10
4.1 The simplest program . 10
4.2 API entry points . 13
4.3 Tutorials . 14

5 Configuring RbaEngine<>: template arguments 16
5.1 KF2KF POSE TYPE: KF-to-KF relative poses 16
5.2 LM TYPE: Relative landmark parameterizations 16
5.3 OBS TYPE: Observation types 17
5.4 Sensor models . 17
5.5 RBA OPTIONS: Other options 18

5.5.1 Choices for sensor pose on robot t 18
5.5.2 Choices for obs noise matrix t 19
5.5.3 Choices for solver t 19

6 Configuring RbaEngine<>: dynamic parameters 20
6.1 Depth of spanning trees . 20
6.2 Edge-creation policy . 21
6.3 Levenberg-Marquardt solver parameters 22

6.3.1 Fluid relinearization 22
6.3.2 Covariance recovery 22
6.3.3 Others . 23

7 Accessing RbaEngine<>: the RBA problem graph 24
7.1 Programmatic access to edges and nodes 24
7.2 Exporting as OpenGL objects 25
7.3 Exporting as Graphviz graphs 26
7.4 Generic graph visitor . 27

8 The srba-slam application 29
8.1 Interface . 29
8.2 Running with sample datasets 29

9 Spanning trees 31

3

10 Library inner structure 33
10.1 Directory layout . 33
10.2 Data structures . 33

11 Pseudo-code 35
11.1 define new keyframe() . 36
11.2 update sym spanning trees() 37

4

1 Introduction

Bundle adjustment (BA) is the name given to one solution to visual Si-
multaneous Localization and Mapping (SLAM) (or Structure From Motion,
SFM) based on maximum-likelihood estimation (MLE) over the space of
map features and camera poses. However, it is by no way limited to visual
maps, since the same optimization techniques employed in BA are also ap-
plicable to many other kind of feature maps, not necessarily involving visual
information, or even to maps of pose constraints (Graph-SLAM).

For readers without a solid background in mobile robotics or computer
vision, it is strongly recommended to start reading seminar works on SLAM
[2,5,11], BA [12] and graph-SLAM [6] before putting hands on programming
with libsrba.

The idea of Relative Bundle Adjustment (RBA) and Relative SLAM was
introduced in a series of works by Gabe Sibley and colleagues in [8–10].

Sparser RBA (SRBA) is the name of the generic and extensible frame-
work for RBA, implemented in the C++ library libsrba. It features the
introduction of a constant-time algorithm for maintaining problem graphs
with arbitrary topologies [4], as well as a generic design which allows turning
RBA into relative Graph-SLAM (i.e. networks of relative pose constraints
whose solutions are also relative poses). The sparser in its name refers to
the proposal of creating graph edges in a way that increases the sparseness
of the involved matrices [4].

5

2 Library installation

2.1 Prerequisites

libsrba started as one of the libraries of the Mobile Robot Programming
Toolkit (MRPT), but became an independent project in 2015. It is header-
only and makes intensive use of templates and design patterns for the sake of
customization, flexibility and extensibility. A modern version of gcc, clang
or Visual C++ (2012 or above) is required.

Although libsrba is header-only, note that it depends on other non-
header-only libraries1, so in practice before using libsrba in your program
you need both (i) access to headers (.h files) and (ii) binary libraries to link
against.

In Ubuntu, installing the packages cmake and libmrpt-dev (version 1.3.0
or newer) is the easiest way to have everything ready to start coding your
own programs. If your official repository has an older version of MRPT, use
this PPA repository instead:

sudo add−apt−r e p o s i t o r y ppa : j o s e l u i s b l a n c o c /mrpt
sudo apt−get update
sudo apt−get i n s t a l l l ibmrpt−dev

MRPT binary packages for Windows are also available online. If you
prefer to build MRPT from sources, please visit the official web2 for detailed
instructions. If you build MRPT from sources and do not need all the
functionality of the rest of libraries, uncheck all the CMake configuration
variables BUILD mrpt-* for the unneeded modules and applications.

2.2 Building SRBA

The libsrba library itself does not need to be compiled (it is header-only!)
but it is recommended to start compiling the examples and unit tests to
make sure everything works.

Once the dependencies are installed, you can configure the libsrba

project with CMake as usual: create a build directory, set the source and
build directories, configure and generate. If MRPT is not found, manually
set MRPT DIR to its compile directory.

To make sure everything works, try compiling all examples and tests.
Run the unit tests by ”building” the target test in Visual Studio or, in
Linux, with make test. These tests include solving a few predefined datasets,

1The link-time dependencies are: mrpt-base for geometry, math auxiliary classes, seri-
alization,... and mrpt-opengl for generating 3D representations of the RBA problems. De-
spite its name, the latter library can be built for platforms without any functional OpenGL
implementation, though it is recommended to always visualize the results for getting a
better insight of what is going on in your programs. The header-only library Eigen [7] is
also a mandatory dependency, but an embedded version is shipped with mrpt-base.

2http://www.mrpt.org/

6

http://www.mrpt.org/download
http://www.mrpt.org/

verifying the expected results from Schür-complement functions, etc. At
present there are 13 unit tests just for libsrba, and more than 160 for
the rest of MRPT modules. It is almost impossible to guarantee that a
library is bug-free with 100% certainty, but at least those tests ensure that
no regressions will be introduced along future features or bug fixes.

2.3 Building your own SRBA-based programs

Refer to the source code of examples in the SRBA/examples/cpp directory
and to the Doxygen documentation and commented source code online.

It is strongly recommended to use CMake to generate compiler project
files. This is a template CMakeLists.txt file (refer to the CMake scripts of
the above-mentioned examples for up-to-date complete scripts):

PROJECT(my f i r s t s rba app)

FIND PACKAGE(SRBA REQUIRED)
INCLUDE DIRECTORIES(${SRBA INCLUDE DIRS})
FIND PACKAGE(MRPT REQUIRED ${SRBA REQUIREDMRPTMODULES} gui)
Add gui and any other MRPT module to the l i s t above , as needed

i f (MSVC)
For MSVC to avoid the C1128 e r r o r about too l a r g e ob j e c t f i l e s :
SET(CMAKECXX FLAGS DEBUG ”${CMAKECXX FLAGS DEBUG} / b igob j /

D CRT SECURE NO WARNINGS”)
SET(CMAKE CXX FLAGS RELEASE ”${CMAKE CXX FLAGS RELEASE} / b igob j /

D CRT SECURE NO WARNINGS”)
end i f (MSVC)

Set opt imized bu i l d i ng in GCC:
IF (CMAKE COMPILER IS GNUCXX AND NOT CMAKE BUILD TYPE MATCHES ”Debug”)
SET(CMAKECXX FLAGS ”${CMAKECXX FLAGS} −O3”)

ENDIF(CMAKE COMPILER IS GNUCXX AND NOT CMAKE BUILD TYPE MATCHES ”Debug
”)

ADDEXECUTABLE(my f i r s t s rba app
my f i r s t s rba app . cpp
)

TARGET LINK LIBRARIES(my f i r s t s rba app ${MRPT LIBS})

7

http://mrpt.github.io/srba/

3 RBA primer

This manual will not explain the mathematical details of how RBA is mod-
eled and solved – please, refer to cited papers. Though, it is mandatory to
clearly establish which entities define an RBA problem before discussing
the library API.

k2k0
1

k2k0
2 k2k2

3

KF0

KF1

KF2

KF3

LM 0

LM 1

z0
0,0 z1

0,0

z2
1,2 z3

1,2

z3
0,0

Figure 1: A toy RBA problem.

An example such that the one in Fig. 1 will help introducing the different
elements. The illustration depicts many elements, some of which are known
data, others are the problem unknowns. The goal of RBA is to recover a
maximum-likelihood estimation (MLE) of those unknowns. Optionally, the
covariances and cross-covariances between estimated variables can be also
evaluated.

We find the following entities in libsrba (refer to Fig. 1):

• Keyframes: A keyframe (KF), as each KFi in the figure, represents
the pose of the robot (or the camera or whatever) at one particular
instant of time. In RBA we will never work with the absolute coordi-
nates of any of these KFs. This is completely different than “common”
Bundle Adjustment, where these poses are the unknowns to estimate.

• Keyframe-to-keyframe (k2k) edges: An edge k2kji represents the
relative pose of KFi with respect to KFj . Notice that “inverse poses”

8

(i.e. in the inverse order than one would expect from the edge di-
rection) are stored for efficiency3. These edges are always treated as
unknowns to be estimated from observation data. They can be param-
eterized in different ways (see §5.1), but the two choices in practice are
either SE(2) or SE(3) poses.

• Landmarks: A landmark (LM) is any entity which can be observed
from different locations. Typically a 2D or 3D point in space, but
could be a line, segment, plane or any user-defined entity. They are
represented in the Fig. 1 as stars denoted as LMi. The concept of
absolute coordinates of a LM does not exist in RBA.

• Relative position and ”base keyframe” of a LM: Each LM is as-
sociated to exactly one KF, its base KF, with respect to which the LM
has a relative position. This relative position can be either “known”
(“fixed” in the C++ API) or “unknown”, in which case it is also esti-
mated during the problem optimization. There exist several possible
ways of parameterizing relative positions, as discussed in §5.2. These
relative positions are represented in the figure as thick edges with circle
marks in the middle.

• Observations: An observation zi,jk stands for any piece of sensory
data which is related, somehow, with the position of the i − th LM,
whose base KF is j, as seen from the observing KF k. They are de-
picted as dashed lines in the figure above. Rank-deficient observations,
like those from monocular cameras, are acceptable but two or more ob-
servations are then required before being able to estimate the relative
position of the observed LM.

3In RBA we may need to chain sequences of relative poses and the direction will
often be from newer KFs towards older KFs, hence if we store inverse poses we save the
computational burden of inverting them over and over again.

9

4 Programmer’s first steps

The central class in libsrba is the template RbaEngine<>, which adopts a
“policy-based design” [1]:

template <
class KF2KF POSE TYPE,
class LM TYPE,
class OBS TYPE,
class RBA OPTIONS = RBA OPTIONS DEFAULT>

class RbaEngine ;

Thus, by setting each of the template arguments we literally control
the process of code generation to address one particular instance of a RBA
problem. Since all this happens at compile time, the compiler produces
optimized code for the problem at hand (e.g. SSE2 code for multiplying
matrices of a particular size), avoids code bifurcations, etc.

Due to the combinatorial nature of all the possibilities, detailed in §5, one
template class can generate specialized code for dozens of concrete problems,
including new ones defined by the user without modifying the library at all.
The only price to pay is the longer compiling time associated to any complex
C++ program that exploits metaprogramming with templates.

4.1 The simplest program

The following code illustrates the declaration of an RBA problem for 3D
point landmarks, with SE(3) relative poses for keyframes and 3D range-
bearing observations. Only two keyframes are defined, which means that
after introducing the second one there will be only one k2k edge (an un-
known), which will be estimated by the least-squares optimizer along the
relative positions of all landmarks.

#include <srba . h>

using namespace srba ;
using namespace std ;

// Uncomment each l i n e to ove r r i d e d e f au l t s e t t i n g s :
struct RBA OPTIONS : public RBA OPTIONS DEFAULT
{
// One o f the most important cho i c e s : how to cons t ruc t the r e l a t i v e

coo rd ina t e s graph problem :
// typede f ecps : : l o c a l a r e a s f i x e d s i z e

e d g e c r e a t i o n p o l i c y t ;

// The senso r pose c o i n c i d e s with the robot pose :
// typede f opt ions : : s en so r po s e on robo t none

s en s o r po s e on r obo t t ;

// The senso r no i s e matrix i s the same f o r a l l ob s e rva t i on s and equal
to some given matrix :

typedef opt ions : : ob s e rva t i on no i s e con s t an t mat r i x<obse rva t i on s : :
RangeBearing 3D> ob s no i s e ma t r i x t ;

10

// So lve r a lgor i thm (Defau l t : Lev−Marq , with Schur , with dense
Cholesky) :

// typede f opt ions : : s o lve r LM schur dense cho l e sky s o l v e r t ;
} ;

typedef RbaEngine<
k f 2 k f p o s e s : : SE3 , // Parameter i zat ion o f KF−to−KF poses
landmarks : : Euclidean3D , // Parameter i zat ion o f LM po s i t i o n s
ob s e rva t i on s : : RangeBearing 3D , // Type o f ob s e rva t i on s
RBA OPTIONS
> my srba t ;

int main (int argc , char∗∗ argv)
{

my srba t rba ; // Create an empty RBA problem

// Def ine obs e rva t i on s o f KF #0:
// −−
my srba t : : n ew k f ob s e r va t i on s t l i s t o b s ;
my srba t : : n ew k f ob s e rva t i on t o b s f i e l d ;
o b s f i e l d . i s f i x e d = fa l se ; // Landmarks have unknown r e l a t i v e

// p o s i t i o n s (i . e . are unknowns)
o b s f i e l d . i s unknown w i th i n i t va l = fa l se ; // We don ’ t have

// any guess on the i n i t i a l LM po s i t i o n (w i l l invoke the
// i nv e r s e s enso r model)

// For each obse rvat i on :
for (. . .) {

o b s f i e l d . obs . f e a t i d = . . . ; // The landmark ID
o b s f i e l d . obs . obs data . range = . . . ;
o b s f i e l d . obs . obs data . yaw = . . . ;
o b s f i e l d . obs . obs data . p i t ch = . . . ;
l i s t o b s . push back (o b s f i e l d) ;

}

// This i s the main API entry po int : Def ine KF #0
my srba t : : TNewKeyFrameInfo new k f i n f o ; // P laceho lder o f out i n f o .
rba . de f ine new keyframe (

l i s t o b s , // Input obs e rva t i on s f o r the new KF
new kf in fo , // Output i n f o
true // Run opt imiza t i on o f the l o c a l area
) ;

// Def ine obs e rva t i on s o f KF #1:
// −−
l i s t o b s . c l e a r () ;
// For each obse rvat i on :
for (. . .) {

o b s f i e l d . obs . f e a t i d = . . . ; // The landmark ID
o b s f i e l d . obs . obs data . range = . . . ;
o b s f i e l d . obs . obs data . yaw = . . . ;
o b s f i e l d . obs . obs data . p i t ch = . . . ;
l i s t o b s . push back (o b s f i e l d) ;

}

// This i s the main API entry po int : Def ine KF #1
rba . de f ine new keyframe (

l i s t o b s , // Input obs e rva t i on s f o r the new KF
new kf in fo , // Output i n f o
true // Run opt imiza t i on o f the l o c a l area
) ;

11

cout << ”Created KF #” << new k f i n f o . k f i d
<< ” | # kf−to−kf edges c r ea ted : ” <<
new k f i n f o . c r e a t e d edg e i d s . s i z e () << endl <<
”Optimizat ion e r r o r : ” <<
new k f i n f o . o p t im i z e r e s u l t s . t o t a l s q r e r r o r i n i t <<
” −> ” <<
new k f i n f o . o p t im i z e r e s u l t s . t o t a l s q r e r r o r f i n a l << endl ;

// Save RBA graph as Graphviz f i l e :
rba . s ave g raph as do t (”graph . dot” , true /∗ LMs=save ∗/) ;

return 0 ;
}

12

4.2 API entry points

It must be highlighted that, at present, the only API for inserting new KFs
into the RBA problem is the method define new keyframe():

template <...> class RbaEngine {
. . .

void def ine new keyframe (
const typename t r a i t s t : : n ew k f ob s e r va t i on s t & obs ,
TNewKeyFrameInfo & out new k f in f o ,
const bool r un l o c a l o p t im i z a t i o n = true
) ;
. . .

} ;

which accepts as its main input the list of all the observations gathered
at this new KF. This method always creates a new KF, without analyzing
whether it was too close or too far from other KFs. Thus, it is (for now) the
user’s responsibility not to call the method too often, which would create an
unnecessarily large amount of KFs with the subsequent degradation of the
performance. The constant-time complexity of the overall method assumes
that there exists a maximum number of KFs per area –which is perfectly
reasonable4.

As output, this method fills a RbaEngine<>::TNewKeyFrameInfo struc-
ture with:

• The ID of the newly-created KF.

• The list of all the created KF-to-KF edges. At least one, or more in
the case of loop-closures. The way in which edges are created depends
on the edge-creation policy (see §6.2). An exception will be raised if
no suitable edge is found to connect the new KF to the existing graph.

• The numerical results from the local optimization process: the exact
list of unknowns that undergone optimization, the initial and final root
mean-squared error (RMSE), etc.

Please, refer to the pseudocode description of this method in §11.1 for a
better insight of what happens inside.

4TO DO: Future versions of the software will probably incorporate an automatic mech-
anism to help deciding whether to insert KFs.

13

http://reference.mrpt.org/svn/structmrpt_1_1srba_1_1_rba_engine_1_1_t_new_key_frame_info.html

4.3 Tutorials

More complete versions of the program above, including sample datasets and
rendering of the optimization result as OpenGL scenes are shipped with the
source code5. Screenshots are shown in Figs. 2–3.

Figure 2: Screenshot for tutorial-srba-range-bearing-se3.cpp. Only
two KFs are defined in this example.

5See the directory [MRPT]/samples/srba-examples/srba-tutorials/, or browse on-
line.

14

http://mrpt.googlecode.com/svn/trunk/samples/srba-examples/srba-tutorials/
http://mrpt.googlecode.com/svn/trunk/samples/srba-examples/srba-tutorials/

Figure 3: Screenshot for tutorial-srba-relative-graph-slam.cpp.
White lines represent KF-to-KF edges (unknowns), blue lines are obser-
vations (known data).

15

5 Configuring RbaEngine<>: template arguments

In the following, all class names assume the existence of a previous:

using namespace srba ;

5.1 KF2KF POSE TYPE: KF-to-KF relative poses

This template argument selects the model for the relative poses between
keyframes. The two natural possibilities are SE(2) and SE(3) poses, which
you should employ depending on whether your problem can be considered
planar or not:

• kf2kf poses::SE2 : For 2D relative poses, i.e. they consists of a (x, y)
displacement plus a heading φ. Poses are mapped to mrpt::poses::CPose2D
classes.

• kf2kf poses::SE3 : For 3D relative poses. Given that the least-
squares optimization runs on the linearized neighborhood of the man-
ifold [3] around the instantaneous solutions, the choice between dif-
ferent parameterizations (i.e. quaternions, Euler angles,etc.) becomes
irrelevant. In this case poses become mrpt::poses::CPose3D classes,
which internally hold the 3 × 3 rotation matrices for SO(3) rotations
and (x, y, z) vectors for the translational parts, with optional conver-
sion to/from quaternions and yaw/pitch/roll angles.

Notice that the usage of 2D relative poses limits the robot trajectory to
one single plane, but does not restrict landmarks to also be planar. It is
perfectly legal to use planar poses and 3D landmarks.

5.2 LM TYPE: Relative landmark parameterizations

• landmarks::Euclidean2D : Point landmarks, parameterized with 2D
Euclidean coordinates with respect to the base KF.

• landmarks::Euclidean3D : Point landmarks, parameterized with 3D
Euclidean coordinates with respect to the base KF.

• landmarks::RelativePoses2D : A kind of “fake landmark” used in
relative graph-SLAM. Represents the pose of the base KF, which can
be observed from another KF.

The implementation of these models can be seen in:
#include <srba/models/landmarks.h>.

16

http://reference.mrpt.org/stable/classmrpt_1_1poses_1_1_c_pose2_d.html
http://reference.mrpt.org/stable/classmrpt_1_1poses_1_1_c_pose3_d.html

5.3 OBS TYPE: Observation types

The following observations are implemented and ready to use in the library:

• observations::MonocularCamera : A pair of pixel coordinates (x, y)
for the observed landmark.

• observations::StereoCamera : Pixel coordinates for one left and
one right camera.

• observations::Cartesian 2D : The (x, y) coordinates of the ob-
served landmark, relative to the sensor.

• observations::Cartesian 3D : The (x, y, z) coordinates of the ob-
served landmark, relative to the sensor.

• observations::RangeBearing 2D : The distance and the angle (po-
lar coordinates) of the observed landmark, relative to the sensor.

• observations::RangeBearing 3D : The distance and two angles
(yaw and pitch) of the observed landmark, relative to the sensor.

• observations::RelativePoses 2D : The (x, y, φ) pose of the ob-
served KF, relative to the observer KF.

The implementation of these models can be seen in:
#include <srba/models/observations.h>.

5.4 Sensor models

In order to use together each combination of landmark parameterization
(LM TYPE) and observation (OBS TYPE) a correct sensor model must be im-
plemented which takes care of providing a set of Jacobians, an inverse sensor
model, etc.

These are the models already implemented with this library:

• landmarks::Euclidean3D + observations::MonocularCamera: 3D
landmarks in Euclidean coordinates, observed with a monocular cam-
era (without distortion).

• landmarks::Euclidean3D + observations::StereoCamera: 3D land-
marks in Euclidean coordinates, observed with a stereo camera (with-
out distortion).

• landmarks::Euclidean2D + observations::Cartesian 2D: 2D land-
marks in Euclidean coordinates, whose Euclidean coordinates are di-
rectly observed.

17

• landmarks::Euclidean3D + observations::Cartesian 3D: 3D land-
marks in Euclidean coordinates, whose Euclidean coordinates are di-
rectly observed.

• landmarks::Euclidean2D + observations::RangeBearing 2D: 2D
landmarks in Euclidean coordinates, observed via range and bearing.

• landmarks::Euclidean3D + observations::RangeBearing 3D: 3D
landmarks in Euclidean coordinates, observed via range and bearing.

• landmarks::RelativePoses2D + observations::RelativePoses 2D:
The sensor model for 2D relative graph-SLAM.

The implementation of these models can be seen in:
#include <srba/models/sensors.h>.

5.5 RBA OPTIONS: Other options

This template argument must be a user-defined structure with a set of
typedefs that configure specific aspects of the RBA problem, explored be-
low:

struct my rba opt ions
{

typedef <TYPE 1> s e n s o r po s e on r obo t t ;
typedef <TYPE 2> ob s no i s e ma t r i x t ;
typedef <TYPE 3> s o l v e r t ;

} ;

5.5.1 Choices for sensor pose on robot t

• options::sensor pose on robot none: The pose of a KF corre-
sponds exactly to the pose of the sensor. That is, there is no distinction
between the pose of the “robot” and that of the “sensor”.

• options::sensor pose on robot se3: The sensor is located at an
arbitrary pose with respect to the frame of reference of each KF (the
“robot”). This is the most common case of sensors placed on a mobile
robot, and should be used if we are interested in obtaining the pose of
the robot instead of that of the sensor itself. In the case of cameras,
this option is employed within the program srba-slam to establish
a change of coordinates between the Z-points-up standard for robot
poses and the Z-points-forward of typical camera models. Using this
option has a small computational overhead in comparison to the one
above.

The list of possible types can be found in:
#include <srba/srba options sensor pose.h>.

18

5.5.2 Choices for obs noise matrix t

This option controls the way in which the information matrix Λk for the k−
th observation (inverse of the sensor error covariance matrix) is incorporated
into the weighted least-squares optimizer. Depending on the chosen model,
different data fields to set the model parameters will be available under
srba.parameters.obs noise.

• options::observation noise identity: This is the most compu-
tationally efficient method, since it is assumed that:

Λk = ΛI (1)

with I an identity matrix of the correct size. The error is exactly the
same for all observations.

• options::observation noise constant matrix: In this case Λk

can be any arbitrary matrix6. The same matrix will be used for all
observations.

The list of possible types can be found in:
#include <srba/srba options sensor noise.h>.

5.5.3 Choices for solver t

At present all solvers are different versions of the Levenberg-Marquardt
(LM) algorithm:

• options::solver LM schur dense cholesky: A LM solver, using
the Schür complement to build a reduced system of equations for rel-
ative poses only, which is then solved using a dense Cholesky factor-
ization.

• options::solver LM schur sparse cholesky: Like above, but us-
ing a sparse Cholesky factorization (with the CSparse library) for the
reduced system.

• options::solver LM no schur sparse cholesky: A LM solver, di-
rectly using a sparse Cholesky factorization (with the CSparse library)
on the entire system of equations (both poses and landmarks).

The list of possible types can be found in:
#include <srba/srba options solver.h>.

6As long as it is a valid information matrix: symmetric, positive definite.

19

6 Configuring RbaEngine<>: dynamic parameters

In contrast to the template arguments, which determine the type of problem
at compile time, there exist another set of parameters, suitable for change
at run-time.

They are all found in the public field parameters, which in turn is
built up of other structs whose contents are determined at compile time
depending on the template arguments:

template <...> class RbaEngine {
. . .
struct TAllParameters
{

/∗∗ Di f f e r e n t parameters f o r the SRBA methods ∗/
TSRBAParameters srba ;

/∗∗ Sensor−s p e c i f i c parameters (s enso r c a l i b r a t i o n , e t c .) ∗/
typename OBS TYPE : : TObservationParams senso r ;

/∗∗ Parameters r e l a t e d to the r e l a t i v e pose o f s en s o r s wrt the
robot (i f a pp l i c ab l e) ∗/

typename RBA OPTIONS : : s e n s o r po s e on r obo t t : : parameter s t
s en so r po s e ;

/∗∗ Parameters r e l a t e d to the s enso r no i s e covar iance matrix ∗/
typename RBA OPTIONS : : ob s no i s e ma t r i x t : : parameter s t ob s no i s e ;

} ;

TAllParameters parameters ;
. . .

} ;

6.1 Depth of spanning trees

Two of the most important parameters are:

template <...> class RbaEngine {
. . .
struct TSRBAParameters
{
. . .
/∗∗ Maximum depth f o r maintained spanning t r e e s . ∗/
t o p o d i s t t max tree depth ;
/∗∗ The maximum top o l o g i c a l d i s t anc e o f keyframes

to be opt imized around the most r e c ent keyframe . ∗/
t o p o d i s t t max optimize depth ;
. . .
} ;
. . .

} ;

In general, parameters.srba.max optimize depth should not be larger
than parameters.srba.max tree depth, since optimization needs using the
prebuilt spanning trees. Normally, both values will be the same and very
small (e.g. 3 or 4).

20

6.2 Edge-creation policy

Another critical parameter is:

template <...> class RbaEngine {
. . .
struct TSRBAParameters
{
. . .

TEdgeCreationPolicy e d g e c r e a t i o n p o l i c y ;
. . .
} ;
. . .

} ;

Here, parameters.srba.edge creation policy controls the policy to
decide, given a set of observations for a new KF, how many KF-to-KF edges
must be created and how should they be connected.

Check the doxygen documentation for TEdgeCreationPolicy for a de-
scription of the possibilities.

Note that the user can implement new custom policies by overriding the
virtual method:

template <...> class RbaEngine {
. . .
virtual void e d g e c r e a t i o n p o l i c y (

const TKeyFrameID new kf id ,
const typename t r a i t s t : : n ew k f ob s e r va t i on s t & obs ,
std : : vector<TNewEdgeInfo> &new k2k edge ids) ;

. . .
} ;

in which case the value of parameters.srba.edge creation policy is ig-
nored.

21

http://reference.mrpt.org/svn/namespacemrpt_1_1srba.html#af0fbe388a6a76d59f66e7b8d1353926c

6.3 Levenberg-Marquardt solver parameters

All these can be found under parameters.srba.*:

6.3.1 Fluid relinearization

double min error reduction ratio to relinearize: If the error-reduction
ratio between two consecutive solver iterations is below this threshold, Ja-
cobians will not be re-evaluated at the new solution. This a kind of “fluid
relinearization”, which reduces the computational burden.

6.3.2 Covariance recovery

TCovarianceRecoveryPolicy cov recovery: Controls how or whether co-
variances are to be recovered from the final Hessian matrix used by the
solver. Naive exact recovery implies inverting a sparse matrix, leading to
a dense (fully-correlated) covariance matrix, which is normally expensive.
That is why, by default, only an approximation of the landmark covariances
are evaluated. See the Doxygen documentation for TCovarianceRecoveryPolicy
for further details.

Note that the Hessian itself (i.e. the sparse inverse of the covariance of
all unknowns) is also always provided in the member extra results:

template <...> class RbaEngine {
. . .
struct TOptimizeExtraOutputInfo
{

. . .
typename RBA OPTIONS : : s o l v e r t : : e x t r a r e s u l t s t e x t r a r e s u l t s ;
. . .

} ;
. . .

} ;

after each successful optimization. The specific format in which this Hessian
is provided (i.e. sparse vs. dense) depends on the selected solver (see §5.5.3).
The user can apply any advanced algorithm for recovering only the part of
the covariances really required for the application at hand.

22

http://reference.mrpt.org/svn/namespacemrpt_1_1srba.html#a14e4d971f53601c3b72ba1a321e7b9e1

6.3.3 Others

These other parameters are also worth mentioning:

• bool optimize new edges alone: Runs an optimization with the new
KF-to-KF edges, one by one, as if they were the unique unknowns be-
fore running the local area optimization. This assures that there are
no variables with such a bad initialization that could ruin the overall
estimation. Normally should be left to true, disable for a speed up if
you are sure this step is not needed in your problem.

• bool use robust kernel: Employs a robustifying kernel (pseudo-
Huber) to reduce the impact of outliers. Enabled by default. Should
also tune the kernel param parameter.

• size t max iters: Maximum number of iterations in the least-squares
solver.

23

7 Accessing RbaEngine<>: the RBA problem graph

This section is meant to be complemented by checking the complete Doxygen
documentation online.

7.1 Programmatic access to edges and nodes

The first step for programmatic access to the data structures that represent
KFs, observations, etc. is getting a (const, i.e. unmodifiable) reference to
the internal object that holds the entire RBA state:

template <...> class RbaEngine {
. . .

typedef TRBA Problem state< . . .> rba p rob l em s ta t e t ;
. . .
const rba p rob l em s ta t e t & g e t r b a s t a t e () const ;

. . .
} ;

which is an instance of the class TRBA Problem state<...>. It is recom-
mended to check its Doxygen documentation for a better description of all
the existing data fields, as well as the description in §10.2. The most relevant
public data fields are:

• keyframe vector t keyframes: A vector with information about each
existing KF, indexed by their ID.

• k2k edges deque t k2k edges: All KF-to-KF edges, indexed by their
ID.

• TRelativeLandmarkPosMap unknown lms: The positioning of each (non-
fixed) landmark.

24

http://reference.mrpt.org/svn/structmrpt_1_1srba_1_1_t_r_b_a___problem__state.html

7.2 Exporting as OpenGL objects

The following method is provided to convert (part of) an RBA problem into
a graphical representation suitable for rendering:

template <...> class RbaEngine {
. . .

void bu i l d op eng l r e p r e s e n t a t i o n (
const srba : : TKeyFrameID root keyframe ,
const TOpenGLRepresentationOptions &opt ions ,
mrpt : : opengl : : CSetOfObjectsPtr out scene ,
mrpt : : opengl : : CSetOfObjectsPtr o u t r o o t t r e e = mrpt : : opengl : :

CSetOfObjectsPtr ()
) const ;
. . .

} ;

It is recommended to check the Doxygen documentation of TOpenGLRepresentationOptions
to see all available rendering options, but just a few important remarks:

• In RBA there is no “global map”, obviously. So each graphical repre-
sentation must explicitly choose the origin of coordinates. This is done
by selecting the root keyframe (a KF’s ID) which becomes the root
of a spanning tree of all nearby KFs up to some maximum topological
distance (settable in options).

• For obtaining relative coordinates with respect to the selected root,
this method is capable of building deeper spanning trees than those
maintained for online optimization. However, this clearly has an un-
bounded computational cost that grows with the desired topological
distance, so keep this distance as reduced as possible if the intention
is to render the state of the RBA problem in real time. In particular,
it is recommended to set:

typename my srba t : : TOpenGLRepresentationOptions opengl params ;
opengl params . span tree max depth = rba . parameters . srba .

max tree depth ; // Render the se past keyframes at most .

25

http://reference.mrpt.org/svn/structmrpt_1_1srba_1_1_rba_engine_1_1_t_open_g_l_representation_options.html

7.3 Exporting as Graphviz graphs

The following method allows exporting the RBA problem, in its current
state, to a plain text file in the standard Graphviz format:

template <...> class RbaEngine {
. . .

bool save g raph as do t (
const std : : s t r i n g &targetFileName ,
const bool a l l l andmarks = fa l se
) const ;
. . .

} ;

Note that exporting all landmarks will lead to excessively dense graphs
in any mid to large-size problem. An example is shown in Fig. 4.

0

1

2 34 5

15

L0L1

L2 L3

L4

6 7 8 9 10

L5 L6 L7 L8 L9 11 1213 14

L10 L11 L12L13 L14 16

L15 L16

Figure 4: Example of an RBA graph rendered with Graphviz’s dot: rect-
angles are keyframes, triangles are landmarks, dotted lines are observations
and solid lines are either kf-to-kf edges or landmark relative positions (with
respect to their base keyframes).

26

7.4 Generic graph visitor

There exists a fully-customizable breadth-first search (BFS) visitor, which
allows any user-supplied class to process every node and edge in the RBA
graph, starting at a given root KF and expanding in a classic breadth-first
fashion:

template <...> class RbaEngine {
. . .

template <
class KF VISITOR ,
class FEAT VISITOR,
class K2K EDGE VISITOR,
class K2F EDGE VISITOR
>

void b f s v i s i t o r (
const TKeyFrameID roo t id ,
const t o p o d i s t t max distance ,
const bool r e l y on p r e bu i l t s p ann i n g t r e e s ,
KF VISITOR & k f v i s i t o r ,
FEAT VISITOR & f e a t v i s i t o r ,
K2K EDGE VISITOR & k2k edg e v i s i t o r ,
K2F EDGE VISITOR & k2 f e d g e v i s i t o r) const ;
. . .

} ;

The option rely on prebuilt spanning trees is the only one requiring
a few words. It selects between two different ways of performing the BFS:

• Relying on prebuilt spanning trees: such that the search is limited to
the maximum depth of those trees, and

• Not relying on them: then a complete BFS algorithm is run, suitable
for exploration of the entire RBA problem graph.

The four template argument, the visitor classes, must be defined by the
user. They may be four different classes or just one. Next follows a sketch
of the expected minimum interface for each class:

/∗ Implementation o f FEAT VISITOR ∗/
struct MY FEAT VISITOR
{

bool v i s i t f i l t e r f e a t (
const TLandmarkID lm ID ,
const t o p o d i s t t c u r d i s t)

{
// Return ” true ” i f i t ’ s d e s i r ed to v i s i t t h i s landmark node .

}
void v i s i t f e a t (

const TLandmarkID lm ID ,
const t o p o d i s t t c u r d i s t)

{
// Process t h i s landmark node .

}
} ;

27

/∗ Implementation o f KF VISITOR ∗/
struct MY KF VISITOR
{

bool v i s i t f i l t e r k f (
const TKeyFrameID kf ID ,
const t o p o d i s t t c u r d i s t)

{
// Return ” true ” i f i t ’ s d e s i r ed to v i s i t t h i s keyframe node .

}
void v i s i t k f (

const TKeyFrameID kf ID ,
const t o p o d i s t t c u r d i s t)

{
// Process t h i s keyframe node .

}
} ;

/∗ Implementation o f K2K EDGE VISITOR ∗/
struct MY K2K EDGE VISITOR
{

bool v i s i t f i l t e r k 2 k (
const TKeyFrameID cur r en t k f ,
const TKeyFrameID next k f ,
const k2k edge t ∗ edge ,
const t o p o d i s t t c u r d i s t)

{
// Return ” true ” i f i t ’ s d e s i r ed to v i s i t t h i s kf−to−kf edge .

}
void v i s i t k 2 k (

const TKeyFrameID cur r en t k f ,
const TKeyFrameID next k f ,
const k2k edge t ∗ edge ,
const t o p o d i s t t c u r d i s t)

{
// Process t h i s kf−to−kf edge .

}
} ;

/∗ Implementation o f K2F EDGE VISITOR ∗/
struct MY K2F EDGE VISITOR
{

bool v i s i t f i l t e r k 2 f (
const TKeyFrameID cur r en t k f ,
const k2 f edg e t ∗ edge ,
const t o p o d i s t t c u r d i s t)

{
// Return ” true ” i f i t ’ s d e s i r ed to v i s i t t h i s kf−to−f e a t edge .

}
void v i s i t k 2 f (

const TKeyFrameID cur r en t k f ,
const k2 f edg e t ∗ edge ,
const t o p o d i s t t c u r d i s t)

{
// Process t h i s kf−to−f e a t edge .

}
} ;

28

8 The srba-slam application

This program is ready to use in binary installations of MRPT, so it could
be a good starting point to test the possibilities of SRBA without having to
write a single line of code.

8.1 Interface

srba-slam is a command-line program that loads a dataset from plain text
files and processes it with a given instance of the generic RbaEngine. A
typical call must specify the desired models for relative poses, landmarks
and observations, as well as the data set file:

srba−slam {−−se2 |−−se3 } {−−lm−2d|−−lm−3d} −−obs [StereoCamera | . . .]
−d DATASET. txt [−−sensor−params−cfg− f i l e SENSOR CONFIG. c f g]
[−−no i s e NOISE SIGMA] [−−verbose { 0 | 1 | 2 | 3 }] [−−step−by−s tep]

The sensor configuration file (--sensor-params-cfg-file) is only re-
quired for certain types of observations (e.g. camera calibration files for vi-
sion sensors). Noise parameters can be provided via --noise (and --noise-ang

for angular components) to modify the weighting of least squares optimiza-
tion and, optionally (if --add-noise is set) actual random noise will be also
generated and added to the dataset.

Naturally, not all possible RBA problems are precompiled in this appli-
cation. To see the list of available problems, run:

srba−slam −− l i s t −problems

To explore all the existing parameters, please execute:

srba−slam −−help

or see the program man page:

man srba−slam

8.2 Running with sample datasets

A small collection of datasets is shipped with MRPT and can be found
under:

[MRPTROOT]/ share /mrpt/ da ta s e t s / srba−demos/

where [MRPT ROOT] is:

• C:/Program Files/MRPT/ if a Windows binary package was installed,

• /usr/ if a GNU/Linux binary package was installed, or

• the root directory of source packages.

29

In all cases, shipped files are not the datasets themselves, but the sources
for the RWT dataset generator7. Follow instructions in the README.txt to
generate the datasets.

Then, see one of the *.sh files in the same directory for example calls
to srba-slam for each dataset. As an example, this is how to run the 2D
relative graph-SLAM dataset:

srba−slam −−se2 −−graph−slam −d dataset 30k rel graph slam SENSOR . txt
−−submap−s i z e 10
−−max−spanning−t ree−depth 3 −−max−optimize−depth 3
−−verbose 1 −−no i s e 0 .001 −−noise−ang 0 .2 −−add−no i s e
−−gt−map dataset 30k rel graph slam GT MAP . txt
−−gt−path dataset 30k rel graph slam GT PATH . txt
−−step−by−s tep

7See: http://code.google.com/p/recursive-world-toolkit/

30

http://code.google.com/p/recursive-world-toolkit/

9 Spanning trees

The need to hold spanning trees for every KF in the problem is motivated
by the realization that topological paths appear in the observation model of
landmarks (or in that of relative poses in relative Graph-SLAM). In partic-
ular, we need the shortest path between an observing KF and the base KF
of the observed landmark, as highlighted in Figure 5.

Figure 5: (left) Paths between keyframes involved in observation models.
(right) The corresponding spanning tree.

Internally, each spanning tree is stored as a pair of sparse tables:

• ST.D[i][j]: A symmetric table with the topological distance between
keyframes i↔ j.

• ST.N [i][j]: This table holds the next edge to follow if we are at i and
want to reach j.

Our paper [4] describes an algorithm for incrementally update those
tables as new keyframes and edges are added to the problem.

31

Figure 6: (top) An example RBA problem. (left-bottom) The ST.D table.
(right-bottom) The ST.N table.

32

10 Library inner structure

10.1 Directory layout

As said above, libsrba is a header-only library. Thus the headers include
both: “public” declarations and template implementations.

The user normally includes just one public header,

#inc lude <srba . h>

which in turn includes all the other required headers. However, thinking
of those programmers that intend modifying or extending the library, the
directory layout of all headers is explained below.

B include

B srba.h: The main file that users should include.

B srba

B RbaEngine.h

B (other“public” headers)

B models

B kf2kf poses.h

B landmarks.h

B observations.h

B sensors.h

B impl

B Implementations of template methods.

10.2 Data structures

All the data types and containers employed in this library have been carefully
selected taking into account that the goal is achieving a constant (bounded)
computational cost: no matter how many keyframes (N) or landmarks (M)
already exist in the problem, introducing a new keyframe with a bounded
number of observations should never lead to operations that scale with N
or M , not even logarithmically.

This need has materialized into the requirement of a network of crossed
references (in the C++ sense) between the different containers, which may
seem quite complex at first glance but is necessary to avoid look-up opera-
tions and assure the efficiency of all the SRBA sub-algorithms.

A detailed view of these relationships is provided in Fig. 7 for the refer-
ence of those interested in the low-level implementation details.

33

k
f2

k
f

e
d

g
e

s
 (
d
e
q
u
e
<
>

)

0
1

L
-
1

.
.
.

.
.
.

fi
x

e
d

_
L

M
s

(m
a
p
<
>

)

I
D

I
D

.
.
.

.
.
.

a
ll

 _
L

M
s

 (
d
e
q
u
e
<
>

)

0
1

M
-
1

.
.
.

.
.
.

S
P

A
N

N
IN

G
 T

R
E

E
S

 (
S

Y
M

B
O

L
IC

)

S
T

.N
E

X
T

 (
c
o

m
p

re
s
s
e

d
 c

o
lu

m
n

s
)

F (from)

K
F

 (
to

)

0
(1

)

1
(1

)

8
(2

)

5
(2

)
…

S
T

.E
D

G
E

S
 (

c
o

m
p

re
s
s
e

d
 c

o
lu

m
n

s
)

(from)

K
F

 (
to

)

s
h

o
rt

e
s

t
p

a
th

s
 (
d
e
q
u
e
<
>

)

*
*

*

k
e

y
fr

a
m

e
s

(d
<
>

)

I
D

u
n

k
n

o
w

n
_

L
M

s
(m
a
p
<
>

)

I
D

•
i
d

(o
f
th

is
 e

d
g

e
)

•
f
r
o
m

,
t
o

(K
F

 I
D

s
)

•
i
n
v
_
p
o
s
e

(S
E

(3
))

•
f
i
x
e
d

(b
o

o
l)

•
*
r
e
l
_
p
o
s
i
t
i
o
n

•
b
a
s
e
_
K
F

(K
F

 I
D

s
)

•
p
o
s
i
t
i
o
n

(3
D

 p
o

in
t)

KF

1
(1

)
5

(2
)

4
(2

) …

KF

…

…

.
.
.

*
*

*

S
P

A
N

N
IN

G
 T

R
E

E
S

 (
N

U
M

E
R

IC
)

k
e

y
fr

a
m

e
s

 (
d
e
q
u
e
<
>

)

0
1

N
-
1

.
.
.

.
.
.

•
o
b
s

•
f
i
x
e
d

(
b
o
o
l
)

•
f
i
r
s
t

(
b
o
o
l
)

•
*
r
e
l
_
p
o
s
i
t
i
o
n

I
D

.
.
.

I
D

.
.
.

R
e

la
ti

v
e

 p
o

s
e

s
 (
m
a
p
<
>

)

I
D

I
D

.
.
.

.
.
.

I
D

I
D

.
.
.

.
.
.

S
T

.N
 (
m
a
p
_
a
s
_
v
e
c
t
o
r
<
>

)

P
o

s
e

P
o

s
e

L
E

G
E

N
D

•
a
d
j
a
c
e
n
t
_
k
f
2
k
f
_
e
d
g
e
s

•
a
d
j
a
c
e
n
t
_
k
f
2
l
m
_
e
d
g
e
s

.
.
.

*
*

*

.
.
.

*
*

*

a
ll

_
o

b
s

e
rv

a
ti

o
n

s
 (
d
e
q
u
e
<
>

)

0
1

P
-
1

.
.
.

.
.
.

C
u

s
to

m
 d

a
ta

 s
tr

u
c
tu

re

V
ie

w
 o

f
w

h
a

t’
s
 i
n

s
id

e
 a

 s
tr

u
c
tu

re

Is
 a

 p
o

in
te

r/
re

fe
re

n
c
e

 t
o

Is
 a

n
 i
n

d
e

x
 o

f

I
D

I
D

I
D

I
D

P
o

s
e

L
IN

E
A

R
S

Y
S

T
E

M
L

IN
E

A
R

 S
Y

S
T

E
M

h p
(c

o
m

p
re

s
s
e

d
 c

o
lu

m
n

s
)

ervations

k
f2

k
f
e

d
g
e

s
•

s
y
m

b
o

lic
 i
n

fo

•
n

u
m

e
ri
c
 m

a
tr

ix
1
2
3

4
5
6

7
8
9

•
*
p
o
s
e
_
d
1
_
f
r
o
m
_
o
b
s

•
*
p
o
s
e
_
b
a
s
e
_
f
r
o
m
_
d
1

•
e
d
g
e
_
d
i
r
(
b
o
o
l
)

•
*
f
e
a
t
_
r
e
l
_
p
o
s

•
K
F

I
D

o
f

“
d
+
1
”

h x
(c

o
m

p
re

s
s
e

d
 c

o
lu

m
n

s
)

rvations

C
o

lu
m

n
 i
n

d
ic

e
s

C
o

lu
m

n
 i
n

d
ic

e
s

F

e
a

tu
re

 I
D

s
(b
i
m
a
p
<
>

)

.
.
.

0
/
0

1
/
3

.
.
.

•
*
p
o
s
e
_
b
a
s
e
_
f
r
o
m
_
o
b
s

•
*
f
e
a
t
_
r
e
l
_
p
o
s

Obse

…

…

•
e
d
g
e
_
I
D

•
o
b
s
_
I
D

Obse

…

…

•
s
y
m

b
o

lic
 i
n

fo

•
n

u
m

e
ri
c
 m

a
tr

ix
1
2
3

4
5
6

7
8
9

•
o
b
s
_
I
D

H
e

s
s
ia

n
 b

lo
c
k
s
:

p
p
x

H
H

H

s

U
n

k
n

o
w

n
s

L
is

t
o

f
p

a
ir
s
 (
v
e
c
t
o
r
<
>

)

(s
y
m
.)

x
H

,
p

x
H

H
C

o
m

p
re

s
s
e

d
 c

o
lu

m
n

s

p
x

H
C

o
m

p
re

s
s
e

d
 r

o
w

s

Unknowns

…

…

.
.
.

.
.
.

F
ig

u
re

7
:

D
et

a
il

ed
d

a
ta

st
ru

ct
u

re
s.

R
ef

er
to

th
e

le
ge

n
d

fo
r

th
e

fo
rm

at
of

st
ru

ct
u

re
s

an
d

p
oi

n
te

rs
/r

ef
er

en
ce

s.

34

11 Pseudo-code

These symbols are employed in the following:

• Dmax: Maximum depth for which spanning trees are maintained. It is
also the maximum topological distance from the given KF to look for
unknowns to optimize during a “local area” optimization. Obviously,
all KFs within that distance are also in the spanning tree.

• No: Number of observed landmarks from the new KF being inserted
in the problem.

• NR: The maximum number of reachable KFs for a fixed Dmax. It is
reasonable to consider that this number is bounded for any map, as
long as redundant KFs are not continuously added for the same area.
Figure 8 illustrates the meaning of NR, in a particular example where
the local optimization is performed centered at the keyframe #5.

Figure 8: Example regarding the definition of NR. Here, NR = 5 including
the origin #5.

• γ: A constant coefficient that models the “sparseness” of the graph
being solved by least-squares minimization.

• (zin, α
i
n): The i− th individual observation of the n− th time step, and

its corresponding data association (i.e. its correspondence, the ID of
an existing landmark or a new ID if this is a new LM).

35

11.1 define new keyframe()

Algorithm 1 srba define new keyframe .
Worst case: O((γNR)3 +No(Dmax + logNR))

C++: RBA Problem::define new keyframe()

Input: (zn, αn) =
{(

z1n, α
1
n

)
, ...,

(
zNo
n , αNo

n

)}
. Set of No new observations zin and their data

association αi
n

Input: run local optimization . Whether to also run optimizations
Output: The updated, locally consistent map

// Update keyframes (KFs) data structures

1: n←number of KFs in the map . Assign a free ID to the new KF – O(1)
2: KF [n]←empty KF data structure . Insert at the end of std::map – O(1)

// Apply edge-creation policy to decide how to handle loop closures, etc.

3: while ∅ 6= [(ik ↔ n) = decide edge to create()] do . O(No logNR)

4: add kf2kf edge(ik ↔ n) . Update KF-to-KF edge structures – O(1)
5: update sym spanning trees(ik ↔ n) . O(N2

R logNR)
6: end while . Typ. iterations: O(γ)

// Update symbolic Jacobian structures . O (No(Dmax + logNR))

7: for each
(
zin, α

i
n

)
∈ (zn, αn) do . For each of the No new observations

8: add observation(zin︸︷︷︸
obs. data

, n︸︷︷︸
observing KF

, αi
n︸︷︷︸

landmark ID

) . O(Dmax + logNR)

9: end for

10: if run local optimization then
11: if optimize new edges alone then

// Initialize new edges

12: for each (ik ↔ n) do . For each new kf2kf edge created above
13: non linear optimizer(ik ↔ n) . O(No)
14: end for
15: end if

// Update SLAM estimation

16: edges to optimize← all within a Dmax distance from n . O(NR)
17: non linear optimizer(edges to optimize) . O((γNR)3)
18: end if

36

11.2 update sym spanning trees()

This algorithm is explained in [4].

Algorithm 2 update sym spanning trees . Worst case: O(N2
R logNR)

Input:
(ik ↔ n) . A new edge
Dmax . The maximum desired depth of span. trees

1: STDmax−1(ik)← {∀v/d(v, ik) ≤ Dmax − 1} . O(NR)
2: STDmax (n)← {∀v/d(v, n) ≤ Dmax} . O(NR)

3: for each r ∈ STDmax (n) do . O(NR) iterations
4: for each s ∈ STDmax−1(ik) do . O(NR) iterations
5: // New tentative distance between r and s
6: d← ST .D[n][r] + ST .D[ik][s] + 1 . O(logNR)
7: if (s ∈ spanning tree(r) and d < ST .D[r][s]) or

(s /∈ spanning tree(r) and d ≤ Dmax) then . O(logNR)
8: // Shorter or new path found. Update trees:
9: ST .D[r][s]← d

10: ST .N [r][s]←
{

ik r = n
ST .N [r][n] r 6= n

11: ST .D[s][r]← d . O(logNR)

12: ST .N [s][r]←
{

n s = ik
ST .N [s][ik] s 6= ik

13: end if
14: end for
15: end for

37

References

[1] Andrei Alexandrescu. Modern C++ design: generic programming and
design patterns applied. Addison-Wesley Professional, 2001.

[2] T. Bailey and H. Durrant-Whyte. Simultaneous localisation and map-
ping (SLAM): Part II-State of the art. Robotics and Automation Mag-
azine, 13:108–117, 2006.

[3] J.L. Blanco. A tutorial on se(3) transformation parameterizations and
on-manifold optimization, 2010.

[4] José-Luis Blanco, Javier González-Jiménez, and Juan-Antonio
Fernández-Madrigal. Sparser relative bundle adjustment (srba):
constant-time maintenance and local optimization of arbitrarily large
maps. In IEEE International Conference on Robotics and Automation
(ICRA), may 2013.

[5] H. Durrant-Whyte and T. Bailey. Simultaneous localization and map-
ping: part I. IEEE Robotics and Automation Magazine, 13(2):99–110,
2006.

[6] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard. A tutorial on
graph-based slam. IEEE Intelligent Transportation Systems Magazine,
2(4):31–43, 2010.

[7] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[8] Christopher Mei, Gabe Sibley, Mark Cummins, Paul Newman, and Ian
Reid. Rslam: A system for large-scale mapping in constant-time using
stereo. International journal of computer vision, 94(2):198–214, 2011.

[9] G. Sibley. Relative bundle adjustment. Technical report, Department
of Engineering Science, Oxford University, Tech. Rep, 2009.

[10] G. Sibley, C. Mei, I. Reid, and P. Newman. Adaptive relative bundle
adjustment. In Robotics Science and Systems Conference, pages 1–8,
2009.

[11] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT
Press, September 2005.

[12] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle ad-
justment—a modern synthesis. Vision algorithms: theory and practice,
pages 153–177, 2000.

38

	Introduction
	Library installation
	Prerequisites
	Building SRBA
	Building your own SRBA-based programs

	RBA primer
	Programmer's first steps
	The simplest program
	API entry points
	Tutorials

	Configuring RbaEngine<>: template arguments
	KF2KF_POSE_TYPE: KF-to-KF relative poses
	LM_TYPE: Relative landmark parameterizations
	OBS_TYPE: Observation types
	Sensor models
	RBA_OPTIONS: Other options
	Choices for sensor_pose_on_robot_t
	Choices for obs_noise_matrix_t
	Choices for solver_t

	Configuring RbaEngine<>: dynamic parameters
	Depth of spanning trees
	Edge-creation policy
	Levenberg-Marquardt solver parameters
	Fluid relinearization
	Covariance recovery
	Others

	Accessing RbaEngine<>: the RBA problem graph
	Programmatic access to edges and nodes
	Exporting as OpenGL objects
	Exporting as Graphviz graphs
	Generic graph visitor

	The srba-slam application
	Interface
	Running with sample datasets

	Spanning trees
	Library inner structure
	Directory layout
	Data structures

	Pseudo-code
	define_new_keyframe()
	update_sym_spanning_trees()

